You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The majority of the "memorable" results of relativistic quantum theory were obtained within the framework of the local quantum field approach. The explanation of the basic principles of the local theory and its mathematical structure has left its mark on all modern activity in this area. Originally, the axiomatic approach arose from attempts to give a mathematical meaning to the quantum field theory of strong interactions (of Yukawa type). The fields in such a theory are realized by operators in Hilbert space with a positive Poincare-invariant scalar product. This "classical" part of the axiomatic approach attained its modern form as far back as the sixties. * It has retained its importance ...
The origins of the harmonic analysis go back to an ingenious idea of Fourier that any reasonable function can be represented as an infinite linear combination of sines and cosines. Today's harmonic analysis incorporates the elements of geometric measure theory, number theory, probability, and has countless applications from data analysis to image recognition and from the study of sound and vibrations to the cutting edge of contemporary physics. The present volume is based on lectures presented at the summer school on Harmonic Analysis. These notes give fresh, concise, and high-level introductions to recent developments in the field, often with new arguments not found elsewhere. The volume will be of use both to graduate students seeking to enter the field and to senior researchers wishing to keep up with current developments.
This is a collection of Prof L D Faddeev's important lectures, papers and talks. Some of these have not been published before and some have, for the first time, been translated from Russian into English. The topics covered correspond to several distinctive and pioneering contributions of Prof Faddeev to modern mathematical physics: quantization of Yang?Mills and Einstein gravitational fields, soliton theory, the many-dimensional inverse problem in potential scattering, the Hamiltonian approach to anomalies, and the theory of quantum integrable models. There are also two papers on more general aspects of the interrelations between physics and mathematics as well as an autobiographical essay.
Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.
This monograph introduces mathematicians, physicists, and engineers to the ideas relating quantum mechanics and symmetries - both described in terms of Lie algebras and Lie groups. The exposition of quantum mechanics from this point of view reveals that classical mechanics and quantum mechanics are very much alike. Written by a mathematician and a physicist, this book is (like a math book) about precise concepts and exact results in classical mechanics and quantum mechanics, but motivated and discussed (like a physics book) in terms of their physical meaning. The reader can focus on the simplicity and beauty of theoretical physics, without getting lost in a jungle of techniques for estimating or calculating quantities of interest.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
The Sixth International Workshop on Complex Structures and Vector Fields was a continuation of the previous five workshops (1992, 1994, 1996, 1998, 2000) on similar research projects. This series of workshops aims at higher achievements in studies of new research subjects. The present volume will meet with the satisfaction of many readers.
This book is devoted to aspects of the foundations of quantum mechanics in which probabilistic and statistical concepts play an essential role. The main part of the book concerns the quantitative statistical theory of quantum measurement, based on the notion of positive operator-valued measures. During the past years there has been substantial progress in this direction, stimulated to a great extent by new applications such as Quantum Optics, Quantum Communication and high-precision experiments. The questions of statistical interpretation, quantum symmetries, theory of canonical commutation relations and Gaussian states, uncertainty relations as well as new fundamental bounds concerning the accuracy of quantum measurements, are discussed in this book in an accessible yet rigorous way. Compared to the first edition, there is a new Supplement devoted to the hidden variable issue. Comments and the bibliography have also been extended and updated.