Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

$p$-Adic Analysis, Arithmetic and Singularities
  • Language: en
  • Pages: 311

$p$-Adic Analysis, Arithmetic and Singularities

This volume contains the proceedings of the 2019 Lluís A. Santaló Summer School on $p$-Adic Analysis, Arithmetic and Singularities, which was held from June 24–28, 2019, at the Universidad Internacional Menéndez Pelayo, Santander, Spain. The main purpose of the book is to present and analyze different incarnations of the local zeta functions and their multiple connections in mathematics and theoretical physics. Local zeta functions are ubiquitous objects in mathematics and theoretical physics. At the mathematical level, local zeta functions contain geometry and arithmetic information about the set of zeros defined by a finite number of polynomials. In terms of applications in theoretica...

Tangential Boundary Stabilization of Navier-Stokes Equations
  • Language: en
  • Pages: 146

Tangential Boundary Stabilization of Navier-Stokes Equations

In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of th...

Homological and Homotopical Aspects of Torsion Theories
  • Language: en
  • Pages: 224

Homological and Homotopical Aspects of Torsion Theories

In this paper the authors investigate homological and homotopical aspects of a concept of torsion which is general enough to cover torsion and cotorsion pairs in abelian categories, $t$-structures and recollements in triangulated categories, and torsion pairs in stable categories. The proper conceptual framework for this study is the general setting of pretriangulated categories, an omnipresent class of additive categories which includes abelian, triangulated, stable, and moregenerally (homotopy categories of) closed model categories in the sense of Quillen, as special cases. The main focus of their study is on the investigation of the strong connections and the interplay between (co)torsion...

Ramanujan's Forty Identities for the Rogers-Ramanujan Functions
  • Language: en
  • Pages: 110

Ramanujan's Forty Identities for the Rogers-Ramanujan Functions

Sir Arthur Conan Doyle's famous fictional detective Sherlock Holmes and his sidekick Dr. Watson go camping and pitch their tent under the stars. During the night, Holmes wakes his companion and says, ``Watson, look up at the stars and tell me what you deduce.'' Watson says, ``I see millions of stars, and it is quite likely that a few of them are planets just like Earth. Therefore there may also be life on these planets.'' Holmes replies, ``Watson, you idiot. Somebody stole ourtent.'' When seeking proofs of Ramanujan's identities for the Rogers-Ramanujan functions, Watson, i.e., G. N. Watson, was not an ``idiot.'' He, L. J. Rogers, and D. M. Bressoud found proofs for several of the identities...

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation
  • Language: en
  • Pages: 112

An Axiomatic Approach to Function Spaces, Spectral Synthesis, and Luzin Approximation

The authors define axiomatically a large class of function (or distribution) spaces on $N$-dimensional Euclidean space. The crucial property postulated is the validity of a vector-valued maximal inequality of Fefferman-Stein type. The scales of Besov spaces ($B$-spaces) and Lizorkin-Triebel spaces ($F$-spaces), and as a consequence also Sobolev spaces, and Bessel potential spaces, are included as special cases. The main results of Chapter 1 characterize our spaces by means of local approximations, higher differences, and atomic representations. In Chapters 2 and 3 these results are applied to prove pointwise differentiability outside exceptional sets of zero capacity, an approximation property known as spectral synthesis, a generalization of Whitney's ideal theorem, and approximation theorems of Luzin (Lusin) type.

Stability of Spherically Symmetric Wave Maps
  • Language: en
  • Pages: 96

Stability of Spherically Symmetric Wave Maps

Presents a study of Wave Maps from ${\mathbf{R}}^{2+1}$ to the hyperbolic plane ${\mathbf{H}}^{2}$ with smooth compactly supported initial data which are close to smooth spherically symmetric initial data with respect to some $H^{1+\mu}$, $\mu>0$.

Operator Valued Hardy Spaces
  • Language: en
  • Pages: 78

Operator Valued Hardy Spaces

The author gives a systematic study of the Hardy spaces of functions with values in the noncommutative $Lp$-spaces associated with a semifinite von Neumann algebra $\mathcal{M .$ This is motivated by matrix valued Harmonic Analysis (operator weighted norm inequalities, operator Hilbert transform), as well as by the recent development of noncommutative martingale inequalities. in this paper noncommutative Hardy spaces are defined by noncommutative Lusin integral function, and it isproved that they are equivalent to those defined by noncommutative Littlewood-Paley G-functions. The main results of this paper include: (i) The analogue in the author's setting of the classical Fefferman duality theorem between $\mathcal{H 1$ and $\mathrm{BMO $. (ii) The atomic decomposition of theauthor's noncommutative $\mathcal{H 1.$ (iii) The equivalence between the norms of the noncommutative Hardy spaces and of the noncommutative $Lp$-spaces $(1

On Boundary Interpolation for Matrix Valued Schur Functions
  • Language: en
  • Pages: 122

On Boundary Interpolation for Matrix Valued Schur Functions

A number of interpolation problems are considered in the Schur class of $p\times q$ matrix valued functions $S$ that are analytic and contractive in the open unit disk. The interpolation constraints are specified in terms of nontangential limits and angular derivatives at one or more (of a finite number of) boundary points. Necessary and sufficient conditions for existence of solutions to these problems and a description of all the solutions when these conditions are met is given.The analysis makes extensive use of a class of reproducing kernel Hilbert spaces ${\mathcal{H (S)$ that was introduced by de Branges and Rovnyak. The Stein equation that is associated with the interpolation problems under consideration is analyzed in detail. A lossless inverse scattering problem isalso considered.

The Role of True Finiteness in the Admissible Recursively Enumerable Degrees
  • Language: en
  • Pages: 114

The Role of True Finiteness in the Admissible Recursively Enumerable Degrees

When attempting to generalize recursion theory to admissible ordinals, it may seem as if all classical priority constructions can be lifted to any admissible ordinal satisfying a sufficiently strong fragment of the replacement scheme. We show, however, that this is not always the case. In fact, there are some constructions which make an essential use of the notion of finiteness which cannot be replaced by the generalized notion of $\alpha$-finiteness. As examples we discuss bothcodings of models of arithmetic into the recursively enumerable degrees, and non-distributive lattice embeddings into these degrees. We show that if an admissible ordinal $\alpha$ is effectively close to $\omega$ (where this closeness can be measured by size or by cofinality) then such constructions maybe performed in the $\alpha$-r.e. degrees, but otherwise they fail. The results of these constructions can be expressed in the first-order language of partially ordered sets, and so these results also show that there are natu

Mathematical Analyses of Decisions, Voting and Games
  • Language: en
  • Pages: 210

Mathematical Analyses of Decisions, Voting and Games

This volume contains the proceedings of the virtual AMS Special Session on Mathematics of Decisions, Elections and Games, held on April 8, 2022. Decision theory, voting theory, and game theory are three related areas of mathematics that involve making optimal decisions in different contexts. While these three areas are distinct, much of the recent research in these fields borrows techniques from other branches of mathematics such as algebra, combinatorics, convex geometry, logic, representation theory, etc. The papers in this volume demonstrate how the mathematics of decisions, elections, and games can be used to analyze problems from the social sciences.