You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Mathematical Analysis for Modeling is intended for those who want to understand the substance of mathematics, rather than just having familiarity with its techniques. It provides a thorough understanding of how mathematics is developed for and applies to solving scientific and engineering problems. The authors stress the construction of mathematical descriptions of scientific and engineering situations, rather than rote memorizations of proofs and formulas. Emphasis is placed on algorithms as solutions to problems and on insight rather than formal derivations.
Elastic Waves: High Frequency Theory is concerned with mathematical aspects of the theory of high-frequency elastic waves, which is based on the ray method. The foundations of elastodynamics are presented along with the basic theory of plane and spherical waves. The ray method is then described in considerable detail for bulk waves in isotropic and anisotropic media, and also for the Rayleigh waves on the surface of inhomogeneous anisotropic elastic solids. Much attention is paid to analysis of higher-order terms and to generation of waves in inhomogeneous media. The aim of the book is to present a clear, systematic description of the ray method, and at the same time to emphasize its mathematical beauty. Luckily, this beauty is usually not accompanied by complexity and mathematical ornateness.
Nonlinear Structures & Systems, Volume 1: Proceedings of the 40th IMAC, A Conference and Exposition on Structural Dynamics, 2022, the first volume of nine from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Nonlinear Dynamics, including papers on: Experimental Nonlinear Dynamics Jointed Structures: Identification, Mechanics, Dynamics Nonlinear Damping Nonlinear Modeling and Simulation Nonlinear Reduced-Order Modeling Nonlinearity and System Identification
This volume contains the proceedings of the 2000 International Congress of Theoretical and Applied Mechanics. The book captures a snapshot view of the state of the art in the field of mechanics and will be invaluable to engineers and scientists from a variety of disciplines.
This publication showcases the work of UK mathematicians and statisticians by describing industrial problems that have been successfully solved, together with a summary of the financial and/or societal impact that arose from the work. The articles are grouped by sector, and include contributions to climate modelling, engineering and health. The articles are based on Impact Case Studies that were submitted to the Research Excellence Framework (REF2014), a UK government sponsored exercise that assessed the research quality within UK universities. There are many publications in the realm of ‘popular mathematics’ as well as a vast research literature that underpins this. This work is aimed a...
Many environmental problems contain incomplete data in the initial or boundary conditions. How do we solve problems for which some of the initial and/or boundary conditions are unknown? Using a new technique, the sentinel method, this book answers these questions and others as they pertain to inverse problems in environmental pollution, such as pollution of underground and surface waters, thermal pollution, and air pollution.
Vibration problems dealing with advanced Mathematical and Numerical Techniques have extensive application in a wide class of problems in ae- nautics, aerodynamics, space science and technology, off-shore engineering and in the design of different structural components of high speed space crafts and nuclear reactors. Different classes of vibration problems dealing with complex geometries and non-linear behaviour require careful attention of scientists and engineers in pursuit of their research activities. Almost all fields of Engineering, Science and Technology, ranging from small domestic building subjected to earthquake and cyclone to the space craft venturing towards different planets, fro...
Metamaterials represent a new emerging innovative field of research which has shown rapid acceleration over the last couple of years. In this handbook, we present the richness of the field of metamaterials in its widest sense, describing artificial media with sub-wavelength structure for control over wave propagation in four volumes.Volume 1 focuses on the fundamentals of electromagnetic metamaterials in all their richness, including metasurfaces and hyperbolic metamaterials. Volume 2 widens the picture to include elastic, acoustic, and seismic systems, whereas Volume 3 presents nonlinear and active photonic metamaterials. Finally, Volume 4 includes recent progress in the field of nanoplasmonics, used extensively for the tailoring of the unit cell response of photonic metamaterials.In its totality, we hope that this handbook will be useful for a wide spectrum of readers, from students to active researchers in industry, as well as teachers of advanced courses on wave propagation.
These proceedings present an up-to-date and comprehensive review of the field of theoretical and applied mechanics. All the papers are written by leading experts presently active in this subject area.