You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book provides a systematic and unified methodology, including basic principles and reusable processes, for dynamic memory management (DMM) in embedded systems. The authors describe in detail how to design and optimize the use of dynamic memory in modern, multimedia and network applications, targeting the latest generation of portable embedded systems, such as smartphones. Coverage includes a variety of design and optimization topics in electronic design automation of DMM, from high-level software optimization to microarchitecture-level hardware support. The authors describe the design of multi-layer dynamic data structures for the final memory hierarchy layers of the target portable embedded systems and how to create a low-fragmentation, cost-efficient, dynamic memory management subsystem out of configurable components for the particular memory allocation and de-allocation patterns for each type of application. The design methodology described in this book is based on propagating constraints among design decisions from multiple abstraction levels (both hardware and software) and customizing DMM according to application-specific data access and storage behaviors.
The implementation of networks-on-chip (NoC) technology in VLSI integration presents a variety of unique challenges. To deal with specific design solutions and research hurdles related to intra-chip data exchange, engineers are challenged to invoke a wide range of disciplines and specializations while maintaining a focused approach. Leading Researchers Present Cutting-Edge Designs Tools Networks-on-Chips: Theory and Practice facilitates this process, detailing the NoC paradigm and its benefits in separating IP design and functionality from chip communication requirements and interfacing. It starts with an analysis of 3-D NoC architectures and progresses to a discussion of NoC resource alloca...
This edited book entertains a multitude of perspectives on crisis information management systems (CIMS)-based disaster response and recovery management. The use of information technology in disaster management has become the central means for collecting, vetting, and distributing information. It also serves as the backbone for coordination and collaboration between response and recovery units as well as resource management tool. This edited volume aims at covering the whole range of application and uses of CIMS in disaster response and recovery. It showcases coordination and collaboration mechanisms between government agencies, the involvement of non-governmental entities, lessons learned as well as lessons not learned, approaches to disaster resiliency in society, community engagement in disaster/catastrophe responses and recovery, and, particularly, the role of CIMS in response and recovery. Serving as a platform for showcasing recent academic discoveries as well as a knowledge source for practitioners, this volume will be of interest to researchers and practitioners interested in disaster response, public administration, emergency management, and information systems.
This volume features the refereed proceedings of the 17th International Workshop on Power and Timing Modeling, Optimization and Simulation. Papers cover high level design, low power design techniques, low power analog circuits, statistical static timing analysis, power modeling and optimization, low power routing optimization, security and asynchronous design, low power applications, modeling and optimization, and more.
This book constitutes the thoroughly refereed post-conference proceedings of 19th International Workshop on Power and Timing Modeling, Optimization and Simulation, PATMOS 2009, featuring Integrated Circuit and System Design, held in Delft, The Netherlands during September 9-11, 2009. The 26 revised full papers and 10 revised poster papers presented were carefully reviewed and selected from numerous submissions. The papers are organized in topical sections on variability & statistical timing, circuit level techniques, power management, low power circuits & technology, system level techniques, power & timing optimization techniques, self-timed circuits, low power circuit analysis & optimization, and low power design studies.
VLSI 2010 Annual Symposium will present extended versions of the best papers presented in ISVLSI 2010 conference. The areas covered by the papers will include among others: Emerging Trends in VLSI, Nanoelectronics, Molecular, Biological and Quantum Computing. MEMS, VLSI Circuits and Systems, Field-programmable and Reconfigurable Systems, System Level Design, System-on-a-Chip Design, Application-Specific Low Power, VLSI System Design, System Issues in Complexity, Low Power, Heat Dissipation, Power Awareness in VLSI Design, Test and Verification, Mixed-Signal Design and Analysis, Electrical/Packaging Co-Design, Physical Design, Intellectual property creating and sharing.
As Moore’s law continues to unfold, two important trends have recently emerged. First, the growth of chip capacity is translated into a corresponding increase of number of cores. Second, the parallelization of the computation and 3D integration technologies lead to distributed memory architectures. This book describes recent research that addresses urgent challenges in many-core architectures and application mapping. It addresses the architectural design of many core chips, memory and data management, power management, design and programming methodologies. It also describes how new techniques have been applied in various industrial case studies.
This book constitutes thoroughly refereed post-conference proceedings of the workshops of the 18th International Conference on Parallel Computing, Euro-Par 2012, held in Rhodes Islands, Greece, in August 2012. The papers of these 10 workshops BDMC, CGWS, HeteroPar, HiBB, OMHI, Paraphrase, PROPER, UCHPC, VHPC focus on promotion and advancement of all aspects of parallel and distributed computing.
The saturation of design complexity and clock frequencies for single-core processors has resulted in the emergence of multicore architectures as an alternative design paradigm. Nowadays, multicore/multithreaded computing systems are not only a de-facto standard for high-end applications, they are also gaining popularity in the field of embedded computing. The start of the multicore era has altered the concepts relating to almost all of the areas of computer architecture design, including core design, memory management, thread scheduling, application support, inter-processor communication, debugging, and power management. This book gives readers a holistic overview of the field and guides them to further avenues of research by covering the state of the art in this area. It includes contributions from industry as well as academia.
This book covers key concepts in the design of 2D and 3D Network-on-Chip interconnect. It highlights design challenges and discusses fundamentals of NoC technology, including architectures, algorithms and tools. Coverage focuses on topology exploration for both 2D and 3D NoCs, routing algorithms, NoC router design, NoC-based system integration, verification and testing, and NoC reliability. Case studies are used to illuminate new design methodologies.