You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Deep learning is providing exciting solutions for medical image analysis problems and is seen as a key method for future applications. This book gives a clear understanding of the principles and methods of neural network and deep learning concepts, showing how the algorithms that integrate deep learning as a core component have been applied to medical image detection, segmentation and registration, and computer-aided analysis, using a wide variety of application areas. Deep Learning for Medical Image Analysis is a great learning resource for academic and industry researchers in medical imaging analysis, and for graduate students taking courses on machine learning and deep learning for computer vision and medical image computing and analysis. Covers common research problems in medical image analysis and their challenges Describes deep learning methods and the theories behind approaches for medical image analysis Teaches how algorithms are applied to a broad range of application areas, including Chest X-ray, breast CAD, lung and chest, microscopy and pathology, etc. Includes a Foreword written by Nicholas Ayache
The three-volume set LNCS 10433, 10434, and 10435 constitutes the refereed proceedings of the 20th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2017, held inQuebec City, Canada, in September 2017. The 255 revised full papers presented were carefully reviewed and selected from 800 submissions in a two-phase review process. The papers have been organized in the following topical sections: Part I: atlas and surface-based techniques; shape and patch-based techniques; registration techniques, functional imaging, connectivity, and brain parcellation; diffusion magnetic resonance imaging (dMRI) and tensor/fiber processing; and image segmentation and modelling. Part II: optical imaging; airway and vessel analysis; motion and cardiac analysis; tumor processing; planning and simulation for medical interventions; interventional imaging and navigation; and medical image computing. Part III: feature extraction and classification techniques; and machine learning in medical image computing.
The13thInternationalConferenceonMedicalImageComputingandComputer- Assisted Intervention, MICCAI 2010, was held in Beijing, China from 20-24 September,2010.ThevenuewastheChinaNationalConventionCenter(CNCC), China’slargestandnewestconferencecenterwith excellentfacilities andaprime location in the heart of the Olympic Green, adjacent to characteristic constr- tions like the Bird’s Nest (National Stadium) and the Water Cube (National Aquatics Center). MICCAI is the foremost international scienti?c event in the ?eld of medical image computing and computer-assisted interventions. The annual conference has a high scienti?c standard by virtue of the threshold for acceptance, and accordingly MICC...
Annotation The two-volume set LNCS 5241 and LNCS 5242 constitute the refereed proceedings of the 11th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2008, held in New York, NY, USA, in September 2008.The program committee carefully selected 258 revised papers from numerous submissions for presentation in two volumes, based on rigorous peer reviews. The first volume includes 127 papers related to medical image computing, segmentation, shape and statistics analysis, modeling, motion tracking and compensation, as well as registration. The second volume contains 131 contributions related to robotics and interventions, statistical analysis, segmentation, intervention, modeling, and registration.
description not available right now.
The 11th International Conference on Medical Imaging and Computer Assisted Intervention, MICCAI 2008, was held at the Helen and Martin Kimmel Center of New York University, New York City, USA on September 6–10, 2008. MICCAI is the premier international conference in this domain, with - depth papers on the multidisciplinary ?elds of biomedical image computing and analysis, computer assisted intervention and medical robotics. The conference brings together biological scientists, clinicians, computer scientists, engineers, mathematicians, physicists and other interested researchers and o?ers them a forum to exchange ideas in these exciting and rapidly growing ?elds. The conference is both ver...
Handbook of Medical Image Computing and Computer Assisted Intervention presents important advanced methods and state-of-the art research in medical image computing and computer assisted intervention, providing a comprehensive reference on current technical approaches and solutions, while also offering proven algorithms for a variety of essential medical imaging applications. This book is written primarily for university researchers, graduate students and professional practitioners (assuming an elementary level of linear algebra, probability and statistics, and signal processing) working on medical image computing and computer assisted intervention. - Presents the key research challenges in medical image computing and computer-assisted intervention - Written by leading authorities of the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society - Contains state-of-the-art technical approaches to key challenges - Demonstrates proven algorithms for a whole range of essential medical imaging applications - Includes source codes for use in a plug-and-play manner - Embraces future directions in the fields of medical image computing and computer-assisted intervention
The four-volume set LNCS 7724--7727 constitutes the thoroughly refereed post-conference proceedings of the 11th Asian Conference on Computer Vision, ACCV 2012, held in Daejeon, Korea, in November 2012. The total of 226 contributions presented in these volumes was carefully reviewed and selected from 869 submissions. The papers are organized in topical sections on object detection, learning and matching; object recognition; feature, representation, and recognition; segmentation, grouping, and classification; image representation; image and video retrieval and medical image analysis; face and gesture analysis and recognition; optical flow and tracking; motion, tracking, and computational photography; video analysis and action recognition; shape reconstruction and optimization; shape from X and photometry; applications of computer vision; low-level vision and applications of computer vision.
The two-volume set LNCS 4190 and LNCS 4191 constitute the refereed proceedings of the 9th International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2006. The program committee carefully selected 39 revised full papers and 193 revised poster papers for presentation in two volumes. This second volume collects 118 papers related to segmentation, validation and quantitative image analysis, brain image processing, and much more.
The six-volume set LNCS 11764, 11765, 11766, 11767, 11768, and 11769 constitutes the refereed proceedings of the 22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019, held in Shenzhen, China, in October 2019. The 539 revised full papers presented were carefully reviewed and selected from 1730 submissions in a double-blind review process. The papers are organized in the following topical sections: Part I: optical imaging; endoscopy; microscopy. Part II: image segmentation; image registration; cardiovascular imaging; growth, development, atrophy and progression. Part III: neuroimage reconstruction and synthesis; neuroimage segmentation; diffusion weighted magnetic resonance imaging; functional neuroimaging (fMRI); miscellaneous neuroimaging. Part IV: shape; prediction; detection and localization; machine learning; computer-aided diagnosis; image reconstruction and synthesis. Part V: computer assisted interventions; MIC meets CAI. Part VI: computed tomography; X-ray imaging.