You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book presents the techniques used in the microlocal treatment of semiclassical problems coming from quantum physics in a pedagogical, way and is mainly addressed to non-specialists in the subject. It is based on lectures taught by the author over several years, and includes many exercises providing outlines of useful applications of the semi-classical theory.
Recounts the story of how a notorious gang of MIT blackjack savants devised and received backing for a system for winning at the world's most sophisticated casinos, an endeavor that earned them more than three million dollars.
Focuses on a recent approach to adiabatic perturbation theory, which emphasizes the role of effective equations of motion and the separation of the adiabatic limit from the semiclassical limit. A detailed introduction gives an overview of the subject and makes the later chapters accessible also to readers less familiar with the material. Although the general mathematical theory based on pseudodifferential calculus is presented in detail, there is an emphasis on concrete and relevant examples from physics. Applications range from molecular dynamics to the dynamics of electrons in a crystal and from the quantum mechanics of partially confined systems to Dirac particles and nonrelativistic QED.
The authors consider doubly-periodic travelling waves at the surface of an infinitely deep perfect fluid, only subjected to gravity $g$ and resulting from the nonlinear interaction of two simply periodic travelling waves making an angle $2\theta$ between them. Denoting by $\mu =gL/c^{2}$ the dimensionless bifurcation parameter ( $L$ is the wave length along the direction of the travelling wave and $c$ is the velocity of the wave), bifurcation occurs for $\mu = \cos \theta$. For non-resonant cases, we first give a large family of formal three-dimensional gravity travelling waves, in the form of an expansion in powers of the amplitudes of two basic travelling waves. ``Diamond waves'' are a par...
"Volume 209, number 984 (third of 5 numbers)."
"Volume 205, number 963 (second of 5 numbers)."
description not available right now.
This is the third volume of the second edition of the now classic book “The Topos of Music”. The authors present gesture theory, including a gesture philosophy for music, the mathematics of gestures, concept architectures and software for musical gesture theory, the multiverse perspective which reveals the relationship between gesture theory and the string theory in theoretical physics, and applications of gesture theory to a number of musical themes, including counterpoint, modulation theory, free jazz, Hindustani music, and vocal gestures.