Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Conformal Symmetry Breaking Differential Operators on Differential Forms
  • Language: en
  • Pages: 112

Conformal Symmetry Breaking Differential Operators on Differential Forms

We study conformal symmetry breaking differential operators which map dif-ferential forms on Rn to differential forms on a codimension one subspace Rn−1. These operators are equivariant with respect to the conformal Lie algebra of the subspace Rn−1. They correspond to homomorphisms of generalized Verma mod-ules for so(n, 1) into generalized Verma modules for so(n+1, 1) both being induced from fundamental form representations of a parabolic subalgebra. We apply the F -method to derive explicit formulas for such homomorphisms. In particular, we find explicit formulas for the generators of the intertwining operators of the re-lated branching problems restricting generalized Verma modules...

Space – Time – Matter
  • Language: en
  • Pages: 518

Space – Time – Matter

This monograph describes some of the most interesting results obtained by the mathematicians and physicists collaborating in the CRC 647 "Space – Time – Matter", in the years 2005 - 2016. The work presented concerns the mathematical and physical foundations of string and quantum field theory as well as cosmology. Important topics are the spaces and metrics modelling the geometry of matter, and the evolution of these geometries. The partial differential equations governing such structures and their singularities, special solutions and stability properties are discussed in detail. Contents Introduction Algebraic K-theory, assembly maps, controlled algebra, and trace methods Lorentzian mani...

Geometry, Lie Theory and Applications
  • Language: en
  • Pages: 337

Geometry, Lie Theory and Applications

This book consists of contributions from the participants of the Abel Symposium 2019 held in Ålesund, Norway. It was centered about applications of the ideas of symmetry and invariance, including equivalence and deformation theory of geometric structures, classification of differential invariants and invariant differential operators, integrability analysis of equations of mathematical physics, progress in parabolic geometry and mathematical aspects of general relativity. The chapters are written by leading international researchers, and consist of both survey and research articles. The book gives the reader an insight into the current research in differential geometry and Lie theory, as well as applications of these topics, in particular to general relativity and string theory.

Naturality and Mapping Class Groups in Heegard Floer Homology
  • Language: en
  • Pages: 174
Geometric and Spectral Analysis
  • Language: en
  • Pages: 378

Geometric and Spectral Analysis

In 2012, the Centre de Recherches Mathématiques was at the center of many interesting developments in geometric and spectral analysis, with a thematic program on Geometric Analysis and Spectral Theory followed by a thematic year on Moduli Spaces, Extremality and Global Invariants. This volume contains original contributions as well as useful survey articles of recent developments by participants from three of the workshops organized during these programs: Geometry of Eigenvalues and Eigenfunctions, held from June 4-8, 2012; Manifolds of Metrics and Probabilistic Methods in Geometry and Analysis, held from July 2-6, 2012; and Spectral Invariants on Non-compact and Singular Spaces, held from July 23-27, 2012. The topics covered in this volume include Fourier integral operators, eigenfunctions, probability and analysis on singular spaces, complex geometry, Kähler-Einstein metrics, analytic torsion, and Strichartz estimates. This book is co-published with the Centre de Recherches Mathématiques.

Hamiltonian Perturbation Theory for Ultra-Differentiable Functions
  • Language: en
  • Pages: 89

Hamiltonian Perturbation Theory for Ultra-Differentiable Functions

Some scales of spaces of ultra-differentiable functions are introduced, having good stability properties with respect to infinitely many derivatives and compositions. They are well-suited for solving non-linear functional equations by means of hard implicit function theorems. They comprise Gevrey functions and thus, as a limiting case, analytic functions. Using majorizing series, we manage to characterize them in terms of a real sequence M bounding the growth of derivatives. In this functional setting, we prove two fundamental results of Hamiltonian perturbation theory: the invariant torus theorem, where the invariant torus remains ultra-differentiable under the assumption that its frequency...

Decoupling on the Wiener Space, Related Besov Spaces, and Applications to BSDEs
  • Language: en
  • Pages: 112
Geometric Analysis on Symmetric Spaces
  • Language: en
  • Pages: 657

Geometric Analysis on Symmetric Spaces

This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a cha...

Geometric Analysis on Symmetric Spaces
  • Language: en
  • Pages: 657

Geometric Analysis on Symmetric Spaces

"This book gives the first systematic exposition of geometric analysis on Riemannian symmetric spaces and its relationship to the representation theory of Lie groups. The book starts with modern integral geometry for double fibrations and treats several examples in detail. After discussing the theory of Radon transforms and Fourier transforms on symmetric spaces, inversion formulas, and range theorems, Helgason examines applications to invariant differential equations on symmetric spaces, existence theorems, and explicit solution formulas, particularly potential theory and wave equations. The canonical multitemporal wave equation on a symmetric space is included. The book concludes with a chapter on eigenspace representations - that is, representations on solution spaces of invariant differential equations."--BOOK JACKET.

Number Theory, Analysis and Geometry
  • Language: en
  • Pages: 715

Number Theory, Analysis and Geometry

Serge Lang was an iconic figure in mathematics, both for his own important work and for the indelible impact he left on the field of mathematics, on his students, and on his colleagues. Over the course of his career, Lang traversed a tremendous amount of mathematical ground. As he moved from subject to subject, he found analogies that led to important questions in such areas as number theory, arithmetic geometry, and the theory of negatively curved spaces. Lang's conjectures will keep many mathematicians occupied far into the future. In the spirit of Lang’s vast contribution to mathematics, this memorial volume contains articles by prominent mathematicians in a variety of areas of the field, namely Number Theory, Analysis, and Geometry, representing Lang’s own breadth of interest and impact. A special introduction by John Tate includes a brief and fascinating account of the Serge Lang’s life. This volume's group of 6 editors are also highly prominent mathematicians and were close to Serge Lang, both academically and personally. The volume is suitable to research mathematicians in the areas of Number Theory, Analysis, and Geometry.