Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Machine Learning Refined
  • Language: en
  • Pages: 597

Machine Learning Refined

An intuitive approach to machine learning covering key concepts, real-world applications, and practical Python coding exercises.

Architects of Intelligence
  • Language: en
  • Pages: 540

Architects of Intelligence

Financial Times Best Books of the Year 2018 TechRepublic Top Books Every Techie Should Read Book Description How will AI evolve and what major innovations are on the horizon? What will its impact be on the job market, economy, and society? What is the path toward human-level machine intelligence? What should we be concerned about as artificial intelligence advances? Architects of Intelligence contains a series of in-depth, one-to-one interviews where New York Times bestselling author, Martin Ford, uncovers the truth behind these questions from some of the brightest minds in the Artificial Intelligence community. Martin has wide-ranging conversations with twenty-three of the world's foremost ...

Computational Intelligence
  • Language: en
  • Pages: 628

Computational Intelligence

Computational Intelligence: An Introduction, Second Edition offers an in-depth exploration into the adaptive mechanisms that enable intelligent behaviour in complex and changing environments. The main focus of this text is centred on the computational modelling of biological and natural intelligent systems, encompassing swarm intelligence, fuzzy systems, artificial neutral networks, artificial immune systems and evolutionary computation. Engelbrecht provides readers with a wide knowledge of Computational Intelligence (CI) paradigms and algorithms; inviting readers to implement and problem solve real-world, complex problems within the CI development framework. This implementation framework wi...

Programming Machine Learning
  • Language: en
  • Pages: 437

Programming Machine Learning

You've decided to tackle machine learning - because you're job hunting, embarking on a new project, or just think self-driving cars are cool. But where to start? It's easy to be intimidated, even as a software developer. The good news is that it doesn't have to be that hard. Master machine learning by writing code one line at a time, from simple learning programs all the way to a true deep learning system. Tackle the hard topics by breaking them down so they're easier to understand, and build your confidence by getting your hands dirty. Peel away the obscurities of machine learning, starting from scratch and going all the way to deep learning. Machine learning can be intimidating, with its r...

Advances in Neural Information Processing Systems 19
  • Language: en
  • Pages: 1668

Advances in Neural Information Processing Systems 19

  • Type: Book
  • -
  • Published: 2007
  • -
  • Publisher: MIT Press

The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.

Intimating the Sacred
  • Language: en
  • Pages: 292

Intimating the Sacred

Religion has featured in Anglophone literature in Malaysia from colonial times to the present. In Intimating the Sacred, Andrew Hock Soon Ng considers the practice of everyday religiosity as represented in literature, which is often starkly opposed to the impression created by religious rhetoric promoted by the government. The book's examination of intersections between (post)modernity and religion highlights links between religion and other facets of colonial and postcolonial identity such as class, gender and sexuality. It will appeal not only to scholars and specialists, but also to anyone who enjoys modern Southeast Asian literature. Andrew Hock Soon Ng is senior lecturer in literary stu...

Deep Learning for Coders with fastai and PyTorch
  • Language: en
  • Pages: 624

Deep Learning for Coders with fastai and PyTorch

Deep learning is often viewed as the exclusive domain of math PhDs and big tech companies. But as this hands-on guide demonstrates, programmers comfortable with Python can achieve impressive results in deep learning with little math background, small amounts of data, and minimal code. How? With fastai, the first library to provide a consistent interface to the most frequently used deep learning applications. Authors Jeremy Howard and Sylvain Gugger, the creators of fastai, show you how to train a model on a wide range of tasks using fastai and PyTorch. You’ll also dive progressively further into deep learning theory to gain a complete understanding of the algorithms behind the scenes. Train models in computer vision, natural language processing, tabular data, and collaborative filtering Learn the latest deep learning techniques that matter most in practice Improve accuracy, speed, and reliability by understanding how deep learning models work Discover how to turn your models into web applications Implement deep learning algorithms from scratch Consider the ethical implications of your work Gain insight from the foreword by PyTorch cofounder, Soumith Chintala

Deep Learning Patterns and Practices
  • Language: en
  • Pages: 755

Deep Learning Patterns and Practices

Discover best practices, reproducible architectures, and design patterns to help guide deep learning models from the lab into production. In Deep Learning Patterns and Practices you will learn: Internal functioning of modern convolutional neural networks Procedural reuse design pattern for CNN architectures Models for mobile and IoT devices Assembling large-scale model deployments Optimizing hyperparameter tuning Migrating a model to a production environment The big challenge of deep learning lies in taking cutting-edge technologies from R&D labs through to production. Deep Learning Patterns and Practices is here to help. This unique guide lays out the latest deep learning insights from auth...

Programming PyTorch for Deep Learning
  • Language: en
  • Pages: 220

Programming PyTorch for Deep Learning

Take the next steps toward mastering deep learning, the machine learning method that’s transforming the world around us by the second. In this practical book, you’ll get up to speed on key ideas using Facebook’s open source PyTorch framework and gain the latest skills you need to create your very own neural networks. Ian Pointer shows you how to set up PyTorch on a cloud-based environment, then walks you through the creation of neural architectures that facilitate operations on images, sound, text,and more through deep dives into each element. He also covers the critical concepts of applying transfer learning to images, debugging models, and PyTorch in production. Learn how to deploy deep learning models to production Explore PyTorch use cases from several leading companies Learn how to apply transfer learning to images Apply cutting-edge NLP techniques using a model trained on Wikipedia Use PyTorch’s torchaudio library to classify audio data with a convolutional-based model Debug PyTorch models using TensorBoard and flame graphs Deploy PyTorch applications in production in Docker containers and Kubernetes clusters running on Google Cloud

Modern Robotics
  • Language: en
  • Pages: 545

Modern Robotics

A modern and unified treatment of the mechanics, planning, and control of robots, suitable for a first course in robotics.