You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the 17th International Conference on Arithmetic, Geometry, Cryptography and Coding Theory (AGC2T-17), held from June 10–14, 2019, at the Centre International de Rencontres Mathématiques in Marseille, France. The conference was dedicated to the memory of Gilles Lachaud, one of the founding fathers of the AGC2T series. Since the first meeting in 1987 the biennial AGC2T meetings have brought together the leading experts on arithmetic and algebraic geometry, and the connections to coding theory, cryptography, and algorithmic complexity. This volume highlights important new developments in the field.
This book is motivated by the problem of determining the set of rational points on a variety, but its true goal is to equip readers with a broad range of tools essential for current research in algebraic geometry and number theory. The book is unconventional in that it provides concise accounts of many topics instead of a comprehensive account of just one—this is intentionally designed to bring readers up to speed rapidly. Among the topics included are Brauer groups, faithfully flat descent, algebraic groups, torsors, étale and fppf cohomology, the Weil conjectures, and the Brauer-Manin and descent obstructions. A final chapter applies all these to study the arithmetic of surfaces. The down-to-earth explanations and the over 100 exercises make the book suitable for use as a graduate-level textbook, but even experts will appreciate having a single source covering many aspects of geometry over an unrestricted ground field and containing some material that cannot be found elsewhere.
This volume contains the proceedings of the 11th conference on $\mathrm{AGC^{2}T}$, held in Marseille, France in November 2007. There are 12 original research articles covering asymptotic properties of global fields, arithmetic properties of curves and higher dimensional varieties, and applications to codes and cryptography. This volume also contains a survey article on applications of finite fields by J.-P. Serre. $\mathrm{AGC^{2}T}$ conferences take place in Marseille, France every 2 years. These international conferences have been a major event in the area of applied arithmetic geometry for more than 20 years.
This book provides a musicological investigation into operas that include children. Just over 100 works have been selected here for an in-depth discussion of the composer, the children, and the productions, and around 250 relevant works from around the world are also referenced. Four composers to have most significantly proliferated the medium are discussed in even greater detail: César Cui, Benjamin Britten, Gian Carlo Menotti, and Peter Maxwell Davies. Since opera began, it has been inextricably linked to society, by reflecting and shaping our culture through music and narrative, and, as a result, children have been involved. Despite the contribution they played, for several centuries, th...
This volume contains the proceedings of the Winter School and Workshop on Frobenius Distributions on Curves, held from February 17–21, 2014 and February 24–28, 2014, at the Centre International de Rencontres Mathématiques, Marseille, France. This volume gives a representative sample of current research and developments in the rapidly developing areas of Frobenius distributions. This is mostly driven by two famous conjectures: the Sato-Tate conjecture, which has been recently proved for elliptic curves by L. Clozel, M. Harris and R. Taylor, and the Lang-Trotter conjecture, which is still widely open. Investigations in this area are based on a fine mix of algebraic, analytic and computational techniques, and the papers contained in this volume give a balanced picture of these approaches.
This book constitutes the refereed proceedings of the 9th International Algorithmic Number Theory Symposium, ANTS 2010, held in Nancy, France, in July 2010. The 25 revised full papers presented together with 5 invited papers were carefully reviewed and selected for inclusion in the book. The papers are devoted to algorithmic aspects of number theory, including elementary number theory, algebraic number theory, analytic number theory, geometry of numbers, algebraic geometry, finite fields, and cryptography.
This volume contains the proceedings of the Fifth Spanish Meeting on Number Theory, held from July 8-12, 2013, at the Universidad de Sevilla, Sevilla, Spain. The articles contained in this book give a panoramic vision of the current research in number theory, both in Spain and abroad. Some of the topics covered in this volume are classical algebraic number theory, arithmetic geometry, and analytic number theory. This book is published in cooperation with Real Sociedad Matemática Española (RSME).
This book is devoted to efficient pairing computations and implementations, useful tools for cryptographers working on topics like identity-based cryptography and the simplification of existing protocols like signature schemes. As well as exploring the basic mathematical background of finite fields and elliptic curves, Guide to Pairing-Based Cryptography offers an overview of the most recent developments in optimizations for pairing implementation. Each chapter includes a presentation of the problem it discusses, the mathematical formulation, a discussion of implementation issues, solutions accompanied by code or pseudocode, several numerical results, and references to further reading and notes. Intended as a self-contained handbook, this book is an invaluable resource for computer scientists, applied mathematicians and security professionals interested in cryptography.
For thirty years, the biennial international conference AGC T (Arithmetic, Geometry, Cryptography, and Coding Theory) has brought researchers to Marseille to build connections between arithmetic geometry and its applications, originally highlighting coding theory but more recently including cryptography and other areas as well. This volume contains the proceedings of the 16th international conference, held from June 19–23, 2017. The papers are original research articles covering a large range of topics, including weight enumerators for codes, function field analogs of the Brauer–Siegel theorem, the computation of cohomological invariants of curves, the trace distributions of algebraic groups, and applications of the computation of zeta functions of curves. Despite the varied topics, the papers share a common thread: the beautiful interplay between abstract theory and explicit results.
Covering topics in algebraic geometry, coding theory, and cryptography, this volume presents interdisciplinary group research completed for the February 2016 conference at the Institute for Pure and Applied Mathematics (IPAM) in cooperation with the Association for Women in Mathematics (AWM). The conference gathered research communities across disciplines to share ideas and problems in their fields and formed small research groups made up of graduate students, postdoctoral researchers, junior faculty, and group leaders who designed and led the projects. Peer reviewed and revised, each of this volume's five papers achieves the conference’s goal of using algebraic geometry to address a problem in either coding theory or cryptography. Proposed variants of the McEliece cryptosystem based on different constructions of codes, constructions of locally recoverable codes from algebraic curves and surfaces, and algebraic approaches to the multicast network coding problem are only some of the topics covered in this volume. Researchers and graduate-level students interested in the interactions between algebraic geometry and both coding theory and cryptography will find this volume valuable.