You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book explores the potential of hydrogels as a multiutility system and their benefits (biocompatibility, degradability, and supporting scaffolds) for a wide range of applications in diagnostics and therapeutics. It also discusses the future prospects and challenges facing hydrogels. A wide variety of smart hydrogels (conducting, stimuli responsive, and others) with possible biomedical applications are elaborated. The book demonstrates the effectiveness of hydrogels in diagnostics of diseases in various in vivo and in vitro environments and highlights the engineering/functionalization of hydrogels for everyday drug dosage as an efficient drug carrier, scaffold, and sensing application. Ex...
A comprehensive overview of nanogel-based systems and their applications in nanomedicine.
Personalized health care to manage diseases and optimized treatment is crucial for everyone to maintain health quality. Significant efforts have been made to design and develop novel nano-enabling therapeutic strategies to cure and monitor diseases for personalized health care. As state-of-the-art, various strategies have been reported to develop personalized nanomedicine to combat against target diseases with no side effects. In this book proposal, we are trying to describe fundamentals of personalized nanomedicine, novel nanomaterials for drug delivery, role of nanotechnology for efficient therapeutics approach, nano-pharmacology, targeted CNS drug delivery, stimuli responsive drug release...
September 04-06, 2018 Zurich, Switzerland Key Topics: Advanced Functional Materials, Advanced Optical Materials, Advanced Bio-Materials & Bio-devices, Polymers Science and Engineering, Emerging Areas of Materials Science, Advanced Ceramics and Composite Materials, Advancement in Nanomaterials Science and Nanotechnology, Carbon Based Materials, Materials Science and Engineering, Metals & Metallurgy, Entrepreneurs Investment Meet, Energy Materials and Harvesting, Advanced Computational Materials, Constructional and Engineering Materials, Environmental and Green Materials, Structural Materials, Biosensor and Bio-electronic Materials, Materials Physics, Materials Chemistry, Advanced Materials Engineering, Coatings and Surface Engineering,
Nanopesticides, Nanoherbicides, and Nanofertilizers: Formulations and Applications demonstrates the potential for nanomaterials to revolutionize modern agriculture to become more sustainable. A team of expert scientists explain how the nanoformulation of traditionally used herbicides, fertilizers, and pesticides can protect large-scale crops from unwanted weeds and pests as well as from the environmental side effects that are caused by the bulk application of chemicals. This book demonstrates how nanomaterials, such as hydroxyapatite, clay minerals, zeolites, and polyacrylic acid, have been successfully used to develop fertilizers that promote a slower release of chemicals due to the unique ...
Corrosion in materials is responsible for huge direct as well as indirect losses around the world. To address corrosion, a combinational approach involving molecular simulations of natural inhibitors, pre-structural designs, and the development of traditional but functional polymeric nanocomposites is recommended. This book presents the basics of corrosion from thermodynamic and kinetic points of view, discusses the major driving force behind corrosion, and provides insight into possible remediation techniques.
To ensure a healthy lifestyle, fire safety and protocols are essential. The population boom, economic crunches, and excessive exploitation of nature have enhanced the possibilities of destruction due to an event of a fire. Computational simulations enacting case studies and incorporation of fire safety protocols in daily routines can help in avoiding such mishaps.
This new volume looks at significant new research, methodologies, and applications in the fields of carbon nanotubes and nanoparticles. It explores a variety of new developments in advanced carbon nanotubes and nanoparticles along with the tools to characterize and predict their properties and behavior. It introduces and reviews methods that are most frequently encountered in sophisticated nano-scaled materials domains, and helps to bridge the gap between classical analysis and modern real-life applications. A diverse array of topics in the field is addressed that provides many practical insights into nanocomposites and nanomaterials sciences.
Carbon nanotubes, with their extraordinary engineering properties, have garnered much attention in the past 10 years. Because of the broad range of potential applications, the scientific community is more motivated than ever to move beyond basic properties and explore the real issues associated with carbon nanotube-based applications. Presenting up-to-date literature that presents the current state of the science, this book, Engineered Carbon Nanotubes and Nanofibrous Material: Integrating Theory and Technique, fully explores the development phase of carbon nanotube-based applications. It looks at carbon nanotubes and their applications in diverse areas of science and engineering and considers environmental engineering applications as well. This volume is a valuable resource for engineers, scientists, researchers, and professionals in a wide range of disciplines whose focus remains on the power and promise of carbon nanotubes.
This book provides information on the basics of deformation and fracture in materials and on current, state-of-the-art experimental and numerical/theoretical methods, including data-driven approaches in the deformation and fracture study of materials. The blend of experimental test methods and numerical techniques to study deformation and fracture in materials is discussed. In addition, the application of data-driven approaches in predicting material performance in different types of loading and loading environments is illustrated. Features: Includes clear insights on deformation and fracture in materials, with clear explanations of mechanics and defects relating to them Provides effective treatments of modern numerical simulation methods Explores applications of data-driven approaches such as artificial intelligence, machine learning, and computer vision Reviews simple and basic experimental techniques to understand the concepts of deformation and fracture in materials Details modeling and simulation strategies of mechanics of materials at different scales This book is aimed at researchers and graduate students in fracture mechanics, finite element methods, and materials science.