Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Foundations of Data Science
  • Language: en
  • Pages: 433

Foundations of Data Science

Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.

Introduction to Semi-Supervised Learning
  • Language: en
  • Pages: 116

Introduction to Semi-Supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mi...

Algorithmic Learning Theory
  • Language: en
  • Pages: 388

Algorithmic Learning Theory

  • Type: Book
  • -
  • Published: 2003-06-30
  • -
  • Publisher: Springer

This volume contains the papers presented at the 12th Annual Conference on Algorithmic Learning Theory (ALT 2001), which was held in Washington DC, USA, during November 25–28, 2001. The main objective of the conference is to provide an inter-disciplinary forum for the discussion of theoretical foundations of machine learning, as well as their relevance to practical applications. The conference was co-located with the Fourth International Conference on Discovery Science (DS 2001). The volume includes 21 contributed papers. These papers were selected by the program committee from 42 submissions based on clarity, signi?cance, o- ginality, and relevance to theory and practice of machine learni...

Beyond the Worst-Case Analysis of Algorithms
  • Language: en
  • Pages: 705

Beyond the Worst-Case Analysis of Algorithms

Introduces exciting new methods for assessing algorithms for problems ranging from clustering to linear programming to neural networks.

Algorithmic Learning Theory
  • Language: en
  • Pages: 465

Algorithmic Learning Theory

This book constitutes the refereed proceedings of the 22nd International Conference on Algorithmic Learning Theory, ALT 2011, held in Espoo, Finland, in October 2011, co-located with the 14th International Conference on Discovery Science, DS 2011. The 28 revised full papers presented together with the abstracts of 5 invited talks were carefully reviewed and selected from numerous submissions. The papers are divided into topical sections of papers on inductive inference, regression, bandit problems, online learning, kernel and margin-based methods, intelligent agents and other learning models.

Tutorials on the Foundations of Cryptography
  • Language: en
  • Pages: 461

Tutorials on the Foundations of Cryptography

  • Type: Book
  • -
  • Published: 2017-04-05
  • -
  • Publisher: Springer

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.

The P=NP Question and Gödel’s Lost Letter
  • Language: en
  • Pages: 223

The P=NP Question and Gödel’s Lost Letter

? DoesP=NP. In just ?ve symbols Dick Karp –in 1972–captured one of the deepest and most important questions of all time. When he ?rst wrote his famous paper, I think it’s fair to say he did not know the depth and importance of his question. Now over three decades later, we know P=NP is central to our understanding of compu- tion, it is a very hard problem, and its resolution will have potentially tremendous consequences. This book is a collection of some of the most popular posts from my blog— Godel ̈ Lost Letter andP=NP—which I started in early 2009. The main thrust of the blog, especially when I started, was to explore various aspects of computational complexity around the famousP=NP question. As I published posts I branched out and covered additional material, sometimes a timely event, sometimes a fun idea, sometimes a new result, and sometimes an old result. I have always tried to make the posts readable by a wide audience, and I believe I have succeeded in doing this.

Introduction to Privacy Enhancing Technologies
  • Language: en
  • Pages: 328

Introduction to Privacy Enhancing Technologies

This textbook provides a unique lens through which the myriad of existing Privacy Enhancing Technologies (PETs) can be easily comprehended and appreciated. It answers key privacy-centered questions with clear and detailed explanations. Why is privacy important? How and why is your privacy being eroded and what risks can this pose for you? What are some tools for protecting your privacy in online environments? How can these tools be understood, compared, and evaluated? What steps can you take to gain more control over your personal data? This book addresses the above questions by focusing on three fundamental elements: It introduces a simple classification of PETs that allows their similariti...

Metric Learning
  • Language: en
  • Pages: 139

Metric Learning

Similarity between objects plays an important role in both human cognitive processes and artificial systems for recognition and categorization. How to appropriately measure such similarities for a given task is crucial to the performance of many machine learning, pattern recognition and data mining methods. This book is devoted to metric learning, a set of techniques to automatically learn similarity and distance functions from data that has attracted a lot of interest in machine learning and related fields in the past ten years. In this book, we provide a thorough review of the metric learning literature that covers algorithms, theory and applications for both numerical and structured data....

Learning Theory and Kernel Machines
  • Language: en
  • Pages: 761

Learning Theory and Kernel Machines

This book constitutes the joint refereed proceedings of the 16th Annual Conference on Computational Learning Theory, COLT 2003, and the 7th Kernel Workshop, Kernel 2003, held in Washington, DC in August 2003. The 47 revised full papers presented together with 5 invited contributions and 8 open problem statements were carefully reviewed and selected from 92 submissions. The papers are organized in topical sections on kernel machines, statistical learning theory, online learning, other approaches, and inductive inference learning.