Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Boundary Value Problems
  • Language: en
  • Pages: 596

Boundary Value Problems

A brilliant monograph, directed to graduate and advanced-undergraduate students, on the theory of boundary value problems for analytic functions and its applications to the solution of singular integral equations with Cauchy and Hilbert kernels. With exercises.

Boundary Value Problems, Weyl Functions, and Differential Operators
  • Language: en
  • Pages: 775

Boundary Value Problems, Weyl Functions, and Differential Operators

This open access book presents a comprehensive survey of modern operator techniques for boundary value problems and spectral theory, employing abstract boundary mappings and Weyl functions. It includes self-contained treatments of the extension theory of symmetric operators and relations, spectral characterizations of selfadjoint operators in terms of the analytic properties of Weyl functions, form methods for semibounded operators, and functional analytic models for reproducing kernel Hilbert spaces. Further, it illustrates these abstract methods for various applications, including Sturm-Liouville operators, canonical systems of differential equations, and multidimensional Schrödinger operators, where the abstract Weyl function appears as either the classical Titchmarsh-Weyl coefficient or the Dirichlet-to-Neumann map. The book is a valuable reference text for researchers in the areas of differential equations, functional analysis, mathematical physics, and system theory. Moreover, thanks to its detailed exposition of the theory, it is also accessible and useful for advanced students and researchers in other branches of natural sciences and engineering.

Non-Homogeneous Boundary Value Problems and Applications
  • Language: en
  • Pages: 375

Non-Homogeneous Boundary Value Problems and Applications

1. We describe, at first in a very formaI manner, our essential aim. n Let m be an op en subset of R , with boundary am. In m and on am we introduce, respectively, linear differential operators P and Qj' 0 ~ i ~ 'V. By "non-homogeneous boundary value problem" we mean a problem of the following type: let f and gj' 0 ~ i ~ 'v, be given in function space s F and G , F being a space" on m" and the G/ s spaces" on am" ; j we seek u in a function space u/t "on m" satisfying (1) Pu = f in m, (2) Qju = gj on am, 0 ~ i ~ 'v«])). Qj may be identically zero on part of am, so that the number of boundary conditions may depend on the part of am considered 2. We take as "working hypothesis" that, for fEF and gjEG , j the problem (1), (2) admits a unique solution u E U/t, which depends 3 continuously on the data . But for alllinear probIems, there is a large number of choiees for the space s u/t and {F; G} (naturally linke d together). j Generally speaking, our aim is to determine families of spaces 'ft and {F; G}, associated in a "natural" way with problem (1), (2) and con j venient for applications, and also all possible choiees for u/t and {F; G} j in these families.

Boundary Value Problems for Analytic Functions
  • Language: en
  • Pages: 484

Boundary Value Problems for Analytic Functions

This book deals with boundary value problems for analytic functions with applications to singular integral equations. New and simpler proofs of certain classical results such as the Plemelj formula, the Privalov theorem and the Poincar‚-Bertrand formula are given. Nearly one third of this book contains the author's original works, most of which have not been published in English before and, hence, were previously unknown to most readers in the world.It consists of 7 chapters together with an appendix: Chapter I describes the basic knowledge on Cauchy-type integrals and Cauchy principal value integrals; Chapters II and III study, respectively, fundamental boundary value problems and their ap...

Two-Point Boundary Value Problems: Lower and Upper Solutions
  • Language: en
  • Pages: 502

Two-Point Boundary Value Problems: Lower and Upper Solutions

  • Type: Book
  • -
  • Published: 2006-03-21
  • -
  • Publisher: Elsevier

This book introduces the method of lower and upper solutions for ordinary differential equations. This method is known to be both easy and powerful to solve second order boundary value problems. Besides an extensive introduction to the method, the first half of the book describes some recent and more involved results on this subject. These concern the combined use of the method with degree theory, with variational methods and positive operators. The second half of the book concerns applications. This part exemplifies the method and provides the reader with a fairly large introduction to the problematic of boundary value problems. Although the book concerns mainly ordinary differential equations, some attention is given to other settings such as partial differential equations or functional differential equations. A detailed history of the problem is described in the introduction.· Presents the fundamental features of the method· Construction of lower and upper solutions in problems· Working applications and illustrated theorems by examples· Description of the history of the method and Bibliographical notes

Student Solutions Manual, Boundary Value Problems
  • Language: en
  • Pages: 152

Student Solutions Manual, Boundary Value Problems

Student Solutions Manual, Boundary Value Problems

Mixed Boundary Value Problems
  • Language: en
  • Pages: 486

Mixed Boundary Value Problems

  • Type: Book
  • -
  • Published: 2008-03-26
  • -
  • Publisher: CRC Press

Methods for Solving Mixed Boundary Value Problems An up-to-date treatment of the subject, Mixed Boundary Value Problems focuses on boundary value problems when the boundary condition changes along a particular boundary. The book often employs numerical methods to solve mixed boundary value problems and the associated integral equat

Boundary Value Problems for Engineers
  • Language: en
  • Pages: 523

Boundary Value Problems for Engineers

  • Type: Book
  • -
  • Published: 2019-06-19
  • -
  • Publisher: Springer

This book is designed to supplement standard texts and teaching material in the areas of differential equations in engineering such as in Electrical ,Mechanical and Biomedical engineering. Emphasis is placed on the Boundary Value Problems that are often met in these fields.This keeps the the spectrum of the book rather focussed .The book has basically emerged from the need in the authors lectures on “Advanced Numerical Methods in Biomedical Engineering” at Yeditepe University and it is aimed to assist the students in solving general and application specific problems in Science and Engineering at upper-undergraduate and graduate level.Majority of the problems given in this book are self-c...

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations
  • Language: en
  • Pages: 620

Numerical Solution of Boundary Value Problems for Ordinary Differential Equations

  • Type: Book
  • -
  • Published: 1994-12-01
  • -
  • Publisher: SIAM

This book is the most comprehensive, up-to-date account of the popular numerical methods for solving boundary value problems in ordinary differential equations. It aims at a thorough understanding of the field by giving an in-depth analysis of the numerical methods by using decoupling principles. Numerous exercises and real-world examples are used throughout to demonstrate the methods and the theory. Although first published in 1988, this republication remains the most comprehensive theoretical coverage of the subject matter, not available elsewhere in one volume. Many problems, arising in a wide variety of application areas, give rise to mathematical models which form boundary value problems for ordinary differential equations. These problems rarely have a closed form solution, and computer simulation is typically used to obtain their approximate solution. This book discusses methods to carry out such computer simulations in a robust, efficient, and reliable manner.

Numerical Methods for Two-Point Boundary-Value Problems
  • Language: en
  • Pages: 417

Numerical Methods for Two-Point Boundary-Value Problems

Elementary yet rigorous, this concise treatment explores practical numerical methods for solving very general two-point boundary-value problems. The approach is directed toward students with a knowledge of advanced calculus and basic numerical analysis as well as some background in ordinary differential equations and linear algebra. After an introductory chapter that covers some of the basic prerequisites, the text studies three techniques in detail: initial value or "shooting" methods, finite difference methods, and integral equations methods. Sturm-Liouville eigenvalue problems are treated with all three techniques, and shooting is applied to generalized or nonlinear eigenvalue problems. Several other areas of numerical analysis are introduced throughout the study. The treatment concludes with more than 100 problems that augment and clarify the text, and several research papers appear in the Appendixes.