You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The primary objective of this book is to offer a review of vector calculus needed for the physical sciences and engineering. This review includes necessary excursions into tensor analysis intended as the reader's first exposure to tensors, making aspects of tensors understandable at the undergraduate level.
This text is for those who need an introduction to polarimetric signals to begin working in the field of polarimetric remote sensing, particularly where the contrast between manmade objects and natural backgrounds are the subjects of interest. The book takes a systems approach to the physical processes involved with formation, collection, and analysis of polarimetric remote sensing data in the visible through longwave infrared. (pBRDF) is then introduced as a way to characterize the reflective and emissive polarimetric behavior of materials. With Dr. Schott's text, you will gain an introduction to polarimetric remote sensing, an appreciation of its issues, and the tools to begin to work in the field.
This tutorial will help technical professionals in optics determine whether their technologies have potential application in the life sciences. It also is useful as a 'prep class' for more detailed books on biology and biotechnology, filling the gap between fundamental and high-level approaches.
Morphological image processing, a standard part of the imaging scientist's toolbox, can be applied to a wide range of industrial applications. Concentrating on applications, this text shows how to analyse the problems and then develop successful algorithms to solve them.
Spectroscopy--the study of matter using electromagnetic radiation--and its applications as a scientific tool are the focus of this tutorial. Topics covered include the interaction of light with matter, spectrometer fundamentals, quantum mechanics, selection rules, and experimental factors.
Annotation This tutorial explains antenna theory and operation and is intended for students, engineers, and researchers. Basic wire antennas and array antennas are described in detail and other types are introduced, including reflectors, lenses, horns, microstrip, Yagi, and frequency-independent antennas.
This book supplies the optical component and systems designer, and quality assurance engineers and managers with the definitions, measurement principles, and standard metrics used to characterize high-quality specular surfaces. The author covers both the traditional visual methods as well as newer (but not necessarily better) computer-aided techniques and describes the metrics adopted by the new ISO standards, including the setting of form and finish tolerances. Key issues of industry are raised, to help stimulate research and development of new methods and standards that blend the best of the old and new approaches to surface assessment.
Ten years after the publication of Infrared Optics and Zoom Lenses, this text is still the only current publication devoted exclusively to infrared zoom lenses. This updated second edition includes 18 new refractive and reflective infrared zoom systems, bringing the total number of infrared zoom optical systems to 41 systems. Other additions include a section on focal plane arrays and a new closing chapter specifically devoted to applications of infrared zoom lenses. Coverage of wavelength region has been expanded to include the near infrared. Additional topics include an examination of the importance of principal planes, methods for athermalization by means of computer glass substitution, and global optimization techniques for zoom lens design.
This book provides a comprehensive account of the theory of image formation in a confocal fluorescence microscope as well as a practical guideline to the operation of the instrument, its limitations, and the interpretation of confocal microscopy data. The appendices provide a quick reference to optical theory, microscopy-related formulas and definitions, and Fourier theory.
This introduction to uncooled infrared focal plane arrays and their applications is aimed at professionals, students, and end users. Topics include principal uncooled thermal detection mechanisms; fundamental performance limits and theoretical performance; the state of the art; and applications, technical trends, and systems employing uncooled arrays.