You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Representations of Groups contains papers presented at the Canadian Mathematical Society Annual Seminar held in June 1994, in Banff, Alberta, Canada.
Introduction The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra, $r\ge 3$ (excluding type $\mathrm{D}_3)$ Models for $\mathrm{BC}_r$-graded Lie algebras, $r\ge 3$ (excluding type $\mathrm{D}_3)$ The $\mathfrak{g}$-module decomposition of a $\mathrm{BC}_r$-graded Lie algebra with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Central extensions, derivations and invariant forms Models of $\mathrm{BC}_r$-graded Lie algebras with grading subalgebra of type $\mathrm{B}_2$, $\mathrm{C}_2$, $\mathrm{D}_2$, or $\mathrm{D}_3$ Appendix: Peirce decompositions in structurable algebras References.
This work is about extended affine Lie algebras (EALA's) and their root systems. EALA's were introduced by Høegh-Krohn and Torresani under the name irreducible quasi-simple Lie algebras. The major objective is to develop enough theory to provide a firm foundation for further study of EALA's. The first chapter of the paper is devoted to establishing some basic structure theory. It includes a proof of the fact that, as conjectured by Kac, the invariant symmetric bilinear form on an EALA can be scaled so that its restriction to the real span of the root system is positive semi-definite. The second chapter studies extended affine root systems (EARS) which are an axiomatized version of the root systems arising from EALA's. The concept of a semilattice is used to give a complete description of EARS. In the final chapter, a number of new examples of extended affine Lie algebras are given. The concluding appendix contains an axiomatic characterization of the nonisotropic roots in an EARS in a more general context than the one used in the rest of the paper.
description not available right now.
The record of each copyright registration listed in the Catalog includes a description of the work copyrighted and data relating to the copyright claim (the name of the copyright claimant as given in the application for registration, the copyright date, the copyright registration number, etc.).
In 1978, while collecting documentary photographs of the artists' community in Montparnasse from the first decades of the century, Billy Klüver discovered that some previously unassociated photographs fell into significant groupings. One group in particular, showing Picasso, Max Jacob, Moïse Kisling, Modigliani, and others at the Café de la Rotonde and on Boulevard du Montparnasse, all seemed to have been taken on the same day. The people were wearing the same clothes in each shot and had the same accessories. Their ties were knotted the same way and their collars had the same wrinkles. A total of twenty-four photographs—four rolls of film with six photographs each—were eventually fou...
Contains articles of significant interest to mathematicians, including reports on current mathematical research.