You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This is a text that contains the latest in thinking and the best in practice. It provides a state-of-the-art statement on tertiary teaching from a multi-perspective standpoint. No previous book has attempted to take such a wide view of the topic. The book will be of special interest to academic mathematicians, mathematics educators, and educational researchers. It arose from the ICMI Study into the teaching and learning of mathematics at university level (initiated at the conference in Singapore, 1998).
A study of the emergence in post-Kantian continental philosophy of a focus on the lived experience of temporality. The project of all philosophy may be to gain reconciliation with time, even if not every philosopher has dealt with time expressly. A confrontation with the passing of time and with human finitude runs through the history of philosophy as an ultimate concern. In this genealogy of the concept of temporality, David Hoy examines the emergence in a post-Kantian continental philosophy of a focus on the lived experience of the “time of our lives” rather than on the time of the universe. The purpose is to see how phenomenological and poststructuralist philosophers have tried to loc...
In the last two decades extraordinary progress in the experimental handling of single quantum objects has spurred theoretical research into investigating the coupling between quantum systems and their environment. Decoherence, the gradual deterioration of entanglement due to dissipation and noise fed to the system by the environment, has emerged as a central concept. The present set of lectures is intended as a high-level, but self-contained, introduction into the fields of quantum noise and dissipation.In particular their influence on decoherence and applications pertaining to quantum information and quantum communication are studied, leading the nonspecialist researchers and the advanced students gradually to the forefront of research.
Lecture notes from a Summer School on Quantum Probability held at the University of Grenoble are collected in these two volumes of the QP-PQ series. The articles have been refereed and extensively revised for publication. It is hoped that both current and future students of quantum probability will be engaged, informed and inspired by the contents of these two volumes. An extensive bibliography containing the references from all the lectures is included in Volume 12.
This volume is the first of two volumes containing the revised and completed notes lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics". This school was held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald during the period March 9 – 22, 2003, and supported by the Volkswagen Foundation. The school gave an introduction to current research on quantum independent increment processes aimed at graduate students and non-specialists working in classical and quantum probability, operator algebras, and mathematical physics. The present first volume contains the following lectures: "Lévy Processes in Euclidean Spaces and Groups" by David Applebaum, "Locally Compact Quantum Groups" by Johan Kustermans, "Quantum Stochastic Analysis" by J. Martin Lindsay, and "Dilations, Cocycles and Product Systems" by B.V. Rajarama Bhat.
Lectures given at the school "Quantum Independent Increment Processes: Structure and Applications to Physics" held at the Alfried-Krupp-Wissenschaftskolleg in Greifswald in March 9-22, 2003.
Much has changed in the world of quantum probability since the publication of the last volume in this series. Giants in the field, such as P-A Meyer, K R Parthasarathy and W von Waldenfels, have reached the age of retirement. Readers will, however, be pleased to see evidence in the present volume that Partha remains as creatively active as ever. The field itself, regarded at one time as the esoteric province of a small group of devotees, has come of age. It has attracted the enthusiastic commitment of an ever-growing army of young mathematicians and physicists, many of whom are represented here.
Free probability theory, introduced by Voiculescu, has developed very actively in the last few years and has had an increasing impact on quite different fields in mathematics and physics. Whereas the subject arose out of the field of von Neumann algebras, presented here is a quite different view of Voiculescu's amalgamated free product. This combinatorial description not only allows re-proving of most of Voiculescu's results in a concise and elegant way, but also opens the way for many new results. Unlike other approaches, this book emphasizes the combinatorial structure of the concept of ``freeness''. This gives an elegant and easily accessible description of freeness and leads to new results in unexpected directions. Specifically, a mathematical framework for otherwise quite ad hoc approximations in physics emerges.
Quantum theory is one of the most important intellectual developments in the early twentieth century. The confluence of mathematics and quantum physics emerged arguably from Von Neumann's seminal work on the spectral theory of linear operators. This volume arose from a two-month workshop held at the Institute for Mathematical Sciences at the National University of Singapore in July-September 2008 on mathematical physics, focusing specifically on operator algebras in quantum theory.This volume is essentially written for graduate students and young researchers so that they can acquire a gentle introduction to the application of operator algebras to quantum information sciences, chaotic and many-body problems. Several lecture notes delivered during the workshop by experts in the field were specially commissioned for this volume.