You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Here is an introduction to the theory of quantum groups with emphasis on the spectacular connections with knot theory and Drinfeld's recent fundamental contributions. It presents the quantum groups attached to SL2 as well as the basic concepts of the theory of Hopf algebras. Coverage also focuses on Hopf algebras that produce solutions of the Yang-Baxter equation and provides an account of Drinfeld's elegant treatment of the monodromy of the Knizhnik-Zamolodchikov equations.
Presenting an introduction to the theory of Hopf algebras, the authors also discuss some important aspects of the theory of Lie algebras. This book includes a chapters on the Hopf algebra of symmetric functions, the Hopf algebra of representations of the symmetric groups, the Hopf algebras of the nonsymmetric and quasisymmetric functions, and the Hopf algebra of permutations.
This volume is based on the proceedings of the Hopf-Algebras and Quantum Groups conference at the Free University of Brussels, Belgium. It presents state-of-the-art papers - selected from over 65 participants representing nearly 20 countries and more than 45 lectures - on the theory of Hopf algebras, including multiplier Hopf algebras and quantum g
What does style mean in mathematics? Style is both how one does something and how one communicates what was done. In this book, the author investigates the worlds of the well-known numbers, the binomial coefficients. He follows the example of Raymond Queneau's Exercises in Style.
This book looks to expand on the relationship between Christoffel words and Markoff theory. Part 1 focuses on the classical theory of Markoff, while part II explores the more advanced and recent results around Christoffel words.
A comprehensive, cutting-edge, and highly readable textbook that makes category theory and monoidal category theory accessible to students across the sciences. Category theory is a powerful framework that began in mathematics but has since expanded to encompass several areas of computing and science, with broad applications in many fields. In this comprehensive text, Noson Yanofsky makes category theory accessible to those without a background in advanced mathematics. Monoidal Category Theorydemonstrates the expansive uses of categories, and in particular monoidal categories, throughout the sciences. The textbook starts from the basics of category theory and progresses to cutting edge resear...
This book constitutes the refereed proceedings of the Third International Conference on Mathematics and Computation in Music, MCM 2011, held in Paris, France, in June 2011. The 24 revised full papers presented and the 12 short papers were carefully reviewed and selected from 62 submissions. The MCM conference is the flagship conference of the Society for Mathematics and Computation in Music. This year’s conference aimed to provide a multi-disciplinary platform dedicated to the communication and exchange of ideas amongst researchers involved in mathematics, computer science, music theory, composition, musicology, or other related disciplines. Areas covered were formalization and geometrical representation of musical structures and processes; mathematical models for music improvisation and gestures theory; set-theoretical and transformational approaches; computational analysis and cognitive musicology as well as more general discussions on history, philosophy and epistemology of music and mathematics.
The volume is almost entirely composed of the research and expository papers by the participants of the International Workshop "Groups, Rings, Lie and Hopf Algebras", which was held at the Memorial University of Newfoundland, St. John's, NF, Canada. All four areas from the title of the workshop are covered. In addition, some chapters touch upon the topics, which belong to two or more areas at the same time. Audience: The readership targeted includes researchers, graduate and senior undergraduate students in mathematics and its applications.
Readership: Upper level undergraduates, graduate students, lecturers and researchers in theoretical, mathematical and quantum physics.
Algebra has moved well beyond the topics discussed in standard undergraduate texts on 'modern algebra'. Those books typically dealt with algebraic structures such as groups, rings and fields: still very important concepts! However Quantum Groups: A Path to Current Algebra is written for the reader at ease with at least one such structure and keen to learn algebraic concepts and techniques. A key to understanding these new developments is categorical duality. A quantum group is a vector space with structure. Part of the structure is standard: a multiplication making it an 'algebra'. Another part is not in those standard books at all: a comultiplication, which is dual to multiplication in the precise sense of category theory, making it a 'coalgebra'. While coalgebras, bialgebras and Hopf algebras have been around for half a century, the term 'quantum group', along with revolutionary new examples, was launched by Drinfel'd in 1986.