You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book offers a mathematical update of the state of the art of the research in the field of mathematical and numerical models of the circulatory system. It is structured into different chapters, written by outstanding experts in the field. Many fundamental issues are considered, such as: the mathematical representation of vascular geometries extracted from medical images, modelling blood rheology and the complex multilayer structure of the vascular tissue, and its possible pathologies, the mechanical and chemical interaction between blood and vascular walls, and the different scales coupling local and systemic dynamics. All of these topics introduce challenging mathematical and numerical problems, demanding for advanced analysis and efficient simulation techniques, and pay constant attention to applications of relevant clinical interest. This book is addressed to graduate students and researchers in the field of bioengineering, applied mathematics and medicine, wishing to engage themselves in the fascinating task of modeling the cardiovascular system or, more broadly, physiological flows.
This book provides an overview of new mathematical models, computational simulations and experimental tests in the field of biomedical technology, and covers a wide range of current research and challenges. The first part focuses on the virtual environment used to study biological systems at different scales and under multiphysics conditions. In turn, the second part is devoted to modeling and computational approaches in the field of cardiovascular medicine, e.g. simulation of turbulence in cardiovascular flow, modeling of artificial textile-reinforced heart valves, and new strategies for reducing the computational cost in the fluid-structure interaction modeling of hemodynamics. The book’...
This book provides a theoretical foundation and conceptual framework for the problem of recovering the phase of the Fourier transform.
Presents a comprehensive analytical framework for structured population models in spaces of Radon measures and their numerical approximation.
A systematic presentation of discrete-to-continuum results and methods, offering new perspectives on intrinsically discrete problems.
This book constitutes the refereed proceedings of the 8th International Conference on Functional Imaging and Modeling of the Heart, held in Maastricht, The Netherlands, in June 2015. The 54 revised full papers were carefully reviewed and selected from 72 submissions. The focus of the papers is on following topics: function; imaging; models of mechanics; and models of electrophysiology.
This volume gathers contributions from participants of the Introductory School and the IHP thematic quarter on Numerical Methods for PDE, held in 2016 in Cargese (Corsica) and Paris, providing an opportunity to disseminate the latest results and envisage fresh challenges in traditional and new application fields. Numerical analysis applied to the approximate solution of PDEs is a key discipline in applied mathematics, and over the last few years, several new paradigms have appeared, leading to entire new families of discretization methods and solution algorithms. This book is intended for researchers in the field.
Biomechanics of the Aorta: Modelling for Patient Care is a holistic analysis of the aorta towards its biomechanical description. The book addresses topics such as physiology, clinical imaging, tissue and blood flow modeling, along with knowledge that is needed in diagnostics, aortic rupture prediction, assist surgical planning, and more. It encompasses a wide range of topics from the basic sciences (Vascular biology, Continuum mechanics, Image analysis) to clinical applications, as well as describing and presenting computational studies and experimental benches to mimic, understand and propose the best treatment of aortic pathologies. The book begins with an introduction to the fundamental a...
Mathematical models and numerical simulations can aid the understanding of physiological and pathological processes. This book offers a mathematically sound and up-to-date foundation to the training of researchers and serves as a useful reference for the development of mathematical models and numerical simulation codes.
Delve into an in-depth description and analysis of quasi-interpolation, starting from various areas of approximation theory.