You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The ASI 'Topics in Atomic and Nuclear Collisions' was organized in Predeal from August 31 to September 11. It brought together people with a broad interest in Atomic and Nuclear Physics from several research institutes and universities in Ro mania and 16 other countries. The school continues a tradition that started on a small scale back in 1968, fo cussing mainly on current problems in nuclear physics. Though the organizing of this edition started very late and in very uncertain economic and financial conditions, it turned out to be the largest meeting of this type ever organized in Romania, both in topics and participation. There were many applicants for participation and grants, considerably more than could be handled. The selection made by the local organizing committee was based on the following criteria: a proper balance of atomic and nuclear physicists, a broad representation of people from Research Institutes and Universities, a balanced par ticipat!on with respect to age, sex, nationality and observance of ASI requirements.
Provides detailed methodology of carrying out experiments using accelerated HI beams below 10MeV/ nucleon energies.
- The first book covering a broad range of physical and chemical problems of atomic cluster physics in the context of physics of atomic and molecular collisions bull; Contains contributions from leading experts in the field bull; Considers both free and supported cluster systems bull; Provides both a general introduction to the field and describes its very recent developments -- ideal for graduate and post-graduate students new to the area as well as specialists in atomic cluster physics bull; Useful for comprehensive lecture courses in quantum mechanics, condensed matter physics and other courses in which complex finite systems like atoic clusters are relevant
The International Conference "Bologna 2000: Structure of the Nucleus at the Dawn of the Century" was devoted to a discipline which has seen a strong revival of research activities in the last decade. New experimental results and theoretical developments in nuclear physics will certainly make important contributions to our knowledge and understanding of Nature's fundamental building blocks. The interest aroused by the Conference among the scientific community was clearly reflected in the large number of participants. These represented the most important nuclear physics laboratories in the world. The Conference covered five major topics of modern nuclear physics: nuclear structure, nucleus-nucleus collisions, hadron dynamics, nuclear astrophysics, and transdisciplinary and peaceful applications of nuclear science. It reviewed recent progress in the field and provided a forum for the discussion of current and future research projects.
Commencing with a self-contained overview of atomic collision theory, this monograph presents recent developments of R-matrix theory and its applications to a wide-range of atomic molecular and optical processes. These developments include the electron and photon collisions with atoms, ions and molecules which are required in the analysis of laboratory and astrophysical plasmas, multiphoton processes required in the analysis of superintense laser interactions with atoms and molecules and positron collisions with atoms and molecules required in antimatter studies of scientific and technologial importance. Basic mathematical results and general and widely used R-matrix computer programs are summarized in the appendices.
This book presents a OC snapshotOCO of the most recent and significant advances in the field of cluster physics. It is a comprehensive review based on contributions by the participants of the 2nd International Symposium on Atomic Cluster Collisions (ISACC 2007) held in July 19OCo23, 2007 at GSI, Darmstadt, Germany. The purpose of the Symposium is to promote the growth and exhange of scientific information on the structure and properties of nuclear, atomic, molecular, biological and complex cluster systems studied by means of photonic, electronic, heavy particle and atomic collisions. Particular attention is devoted to dynamic phenomena, many-body effects taking place in cluster systems of a different nature OCo these include problems of fusion and fission, fragmentation, collective electron excitations, phase transitions, etc. Both the experimental and theoretical aspects of cluster physics, uniquely placed between nuclear physics on the one hand and atomic, molecular and solid state physics on the other, are discussed.
With the advent of heavy-ion reactions, nuclear physics has acquired a new frontier. The new heavy-ion sources operating at electrostatic accelerators and the high-energy experiments performed at Berkeley, Dubna, Manchester and Orsay, have opened up the field, and have shown us impressive new prospects. The new accelerators now under construction at Berlin, Daresbury and Darmstadt, as well as those under consideration (GANIL, Oak Ridge, etc. ) are expected to add significantly to our knowledge and understanding of nuclear properties. This applies not only to such exotic topics as the existence and lifetimes of superheavy elements, or the possibil ity of shock waves in nuclei, but also to suc...
This book gives an introduction to main ideas used in the physics of ultra-relativistic heavy-ion collisions. The links between basic theoretical concepts (discussed gradually from the elementary to more advanced level) and the results of experiments are outlined, so that experimentalists may learn more about the foundations of the models used by them to fit and interpret the data, while theoreticians may learn more about how different theoretical ideas are used in practical applications. The main task of the book is to collect the available information and establish a uniform picture of ultra-relativistic heavy-ion collisions. The properties of hot and dense matter implied by this picture are discussed comprehensively. In particular, the issues concerning the formation of the quark-gluon plasma in present and future heavy-ion experiments are addressed.