You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Content-Based Image And Video Retrieval addresses the basic concepts and techniques for designing content-based image and video retrieval systems. It also discusses a variety of design choices for the key components of these systems. This book gives a comprehensive survey of the content-based image retrieval systems, including several content-based video retrieval systems. The survey includes both research and commercial content-based retrieval systems. Content-Based Image And Video Retrieval includes pointers to two hundred representative bibliographic references on this field, ranging from survey papers to descriptions of recent work in the area, entire books and more than seventy websites. Finally, the book presents a detailed case study of designing MUSE–a content-based image retrieval system developed at Florida Atlantic University in Boca Raton, Florida.
The book describes several techniques used to bridge the semantic gap and reflects on recent advancements in content-based image retrieval (CBIR). It presents insights into and the theoretical foundation of various essential concepts related to image searches, together with examples of natural and texture image types. The book discusses key challenges and research topics in the context of image retrieval, and provides descriptions of various image databases used in research studies. The area of image retrieval, and especially content-based image retrieval (CBIR), is a very exciting one, both for research and for commercial applications. The book explains the low-level features that can be extracted from an image (such as color, texture, shape) and several techniques used to successfully bridge the semantic gap in image retrieval, making it a valuable resource for students and researchers interested in the area of CBIR alike.
Discusses major aspects of content-based image retrieval (CBIR) using current technologies and applications within the artificial intelligence (AI) field.
Content-based Image Retrieval (CBIR) ist ein Verfahren zum Auffinden von Bildern in großen Datenbanken wie z. B. dem Internet anhand ihres Inhalts. Ausgehend von einem vom Nutzer bereitgestellten Anfragebild, gibt das System eine sortierte Liste ähnlicher Bilder zurück. Der Großteil moderner CBIR-Systeme vergleicht Bilder ausschließlich anhand ihrer visuellen Ähnlichkeit, d.h. dem Vorhandensein ähnlicher Texturen, Farbkompositionen etc. Jedoch impliziert visuelle Ähnlichkeit nicht zwangsläufig auch semantische Ähnlichkeit. Zum Beispiel können Bilder von Schmetterlingen und Raupen als ähnlich betrachtet werden, weil sich die Raupe irgendwann in einen Schmetterling verwandelt. Opti...
Business intelligence has always been considered an essential ingredient for success. However, it is not until recently that the technology has enabled organizations to generate and deploy intelligence for global competition. These technologies can be leveraged to create the intelligent enterprises of the 21st century that will not only provide excellent and customized services to their customers, but will also create business efficiency for building relationships with suppliers and other business partners on a long term basis. Creating such intelligent enterprises requires the understanding and integration of diverse enterprise components into cohesive intelligent systems. Anticipating that...
Everything you ever wanted to know about multimedia retrieval and management. This comprehensive book offers a full picture of the cutting-edge technologies necessary for a profound introduction to the field. Leading experts also cover a broad range of practical applications.
Recent advancements in the technology of medical imaging, such as CT and MRI scanners, are making it possible to create more detailed 3D and 4D images. These powerful images require vast amounts of digital data to help with the diagnosis of the patient. Artificial intelligence (AI) must play a vital role in supporting with the analysis of this medical imaging data, but it will only be viable as long as healthcare professionals and AI interact to embrace deep thinking platforms such as automation in the identification of diseases in patients. AI Innovation in Medical Imaging Diagnostics is an essential reference source that examines AI applications in medical imaging that can transform hospit...
This volume contains the papers presented at the Second International Conference on Frontiers in Intelligent Computing: Theory and Applications (FICTA-2013) held during 14-16 November 2013 organized by Bhubaneswar Engineering College (BEC), Bhubaneswar, Odisha, India. It contains 63 papers focusing on application of intelligent techniques which includes evolutionary computation techniques like genetic algorithm, particle swarm optimization techniques, teaching-learning based optimization etc for various engineering applications such as data mining, Fuzzy systems, Machine Intelligence and ANN, Web technologies and Multimedia applications and Intelligent computing and Networking etc.
The system is exceptionally robust to image alterations such as intensity variation, sharpness variation, intentional distortions, cropping, shifting, and rotation. These features are extremely important to biomedical image databases since visual features in the query image are not exactly the same as the visual features in the images in the database." "Integrated Region-Based Image Retrieval is an excellent reference for researchers in the fields of image retrieval, multimedia, computer vision and image processing."--BOOK JACKET.
The proceedings of ECML/PKDD 2004 are published in two separate, albeit - tertwined,volumes:theProceedingsofthe 15thEuropeanConferenceonMac- ne Learning (LNAI 3201) and the Proceedings of the 8th European Conferences on Principles and Practice of Knowledge Discovery in Databases (LNAI 3202). The two conferences were co-located in Pisa, Tuscany, Italy during September 20–24, 2004. It was the fourth time in a row that ECML and PKDD were co-located. - ter the successful co-locations in Freiburg (2001), Helsinki (2002), and Cavtat- Dubrovnik (2003), it became clear that researchersstrongly supported the or- nization of a major scienti?c event about machine learning and data mining in Europe. W...