You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Computational techniques for the analysis and design of structural dynamic systems using numerical methods have been the focus of an enormous amount of research for several decades. In general, the numerical methods utilized to solve these problems include two phases: (a) spatial discretization by either the finite element method (FEM) or the finite difference method (FDM), and (b) solution of systems of time dependent second-order ordinary differential equations. In addition, the significantly powerful advances in computer systems capabilities have put on the desks of structural systems designers enormous computing power either by means of increasingly effective computer workstations or else through PCs (personal computers), whose increasing power has succeeded in marginalizing the computational power differences between PCs and workstations in many cases. This volume is a comprehensive treatment of the issues involved in computational techniques in structural dynamic systems.
A fundamental question in the theory of discrete and continuous-time population models concerns the conditions for the extinction or persistence of populations – a question that is addressed mathematically by persistence theory. For some time, it has been recognized that if the dynamics of a structured population are mathematically captured by continuous or discrete semiflows and if these semiflows have first-order approximations, the spectral radii of certain bounded linear positive operators (better known as basic reproduction numbers) act as thresholds between population extinction and persistence. This book combines the theory of discrete-time dynamical systems with applications to pop...
This brief examines mathematical models in nonsmooth mechanics and nonregular electrical circuits, including evolution variational inequalities, complementarity systems, differential inclusions, second-order dynamics, Lur'e systems and Moreau's sweeping process. The field of nonsmooth dynamics is of great interest to mathematicians, mechanicians, automatic controllers and engineers. The present volume acknowledges this transversality and provides a multidisciplinary view as it outlines fundamental results in nonsmooth dynamics and explains how to use them to study various problems in engineering. In particular, the author explores the question of how to redefine the notion of dynamical systems in light of modern variational and nonsmooth analysis. With the aim of bridging between the communities of applied mathematicians, engineers and researchers in control theory and nonlinear systems, this brief outlines both relevant mathematical proofs and models in unilateral mechanics and electronics.
Presenting and developing the theory of spin glasses for mathematical physicists and probabilists working in disordered systems.
The proposed book will offer comprehensive and versatile methodologies and recommendations on how to determine dynamic characteristics of typical micro- and opto-electronic structural elements (printed circuit boards, solder joints, heavy devices, etc.) and how to design a viable and reliable structure that would be able to withstand high-level dynamic loading. Particular attention will be given to portable devices and systems designed for operation in harsh environments (such as automotive, aerospace, military, etc.) In-depth discussion from a mechanical engineer's viewpoint will be conducted to the key components’ level as well as the whole device level. Both theoretical (analytical and computer-aided) and experimental methods of analysis will be addressed. The authors will identify how the failure control parameters (e.g. displacement, strain and stress) of the vulnerable components may be affected by the external vibration or shock loading, as well as by the internal parameters of the infrastructure of the device. Guidelines for material selection, effective protection and test methods will be developed for engineering practice.
This unique book presents original research from the largest cross-national survey of the epidemiology of mental disorders ever conducted. It provides the latest findings from the WHO World Mental Health Surveys based on interviews of nearly 150,000 individuals in twenty-six countries on six continents. The book is ordered by specific disorder, with individual chapters dedicated to presenting detailed findings on the prevalence, onset timing, sociodemographic profile, comorbidity, associated impairment and treatment for eighteen mental disorders. There is also discussion of important cross-national consistencies in the epidemiology of mental disorders and highlighting of intriguing patterns of cross-national variation. This is one of the most comprehensive summaries of the epidemiology of mental disorders ever published, making this an invaluable resource for researchers, clinicians, students and policy-makers in the fields of mental and public health.
This volume studies multivalued evolution equations driven by time-dependent subdifferential operators and optimal control problems for such systems. The formulation is general enough to incorporate problems with time varying constraints. For evolution inclusions, existence relaxation and structural results for the solution set are proved. For optimal control problems, a general existence theory is developed, different forms of the relaxed problem are introduced and studied, well-posedness properties are investigated and the precise relation between the properties of relaxability and well-posedness is established. Various examples of systems which fit in the abstract framework are analysed.
This book describes a broad research program on quantum communication. Here, a cryptographic key is exchanged by two parties using quantum states of light and the security of the system arises from the fundamental properties of quantum mechanics. The author developed new communication protocols using high-dimensional quantum states so that more than one classical bit is transferred by each photon. This approach helps circumvent some of the non-ideal properties of the experimental system, enabling record key rates on metropolitan distance scales. Another important aspect of the work is the encoding of the key on high-dimensional phase-randomized weak coherent states, combined with so-called d...
The book reviews recent research activities in applied mechanics and applied mathematics such as the fields of solid & fluid constitutive modeling for coupled fields, applications of geophysical & environmental context in judicious numerical-computational implementations. The book aims to merge foundation aspects of continuum mechanics with modern technological applications, notably on reviewing recent advances in the treated subjects in an attractive presentation accessible to a wide readership of engineering and applied sciences.