You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The Pacific Rim Conferences for the first decade from the mid 1980's to the mid 1990's were primary concerned with binary stars research. The Conference expanded to all areas of Stellar Astrophysics for the last two meetings in Hong Kong; at Hong Kong University of Science and Technology in 1997 and at the Hong Kong University in 1999. At the conclusion of the very successful Pacific Rim Conference on Stellar Astrophysics held in Hong Kong University, members of the Sci entific Organizing Committee began planning for the next conference. We approached Professor Tan Lu of Nanjing University and Professor Tipei Li of the Institute of High Energy Physics about hosting a con ference in China. Th...
The Pacific Rim Conferences for the first decade from the mid 1980's to the mid 1990's were primary concerned with binary stars research. The Conference expanded to all areas of Stellar Astrophysics for the last two meetings in Hong Kong; at Hong Kong University of Science and Technology in 1997 and at the Hong Kong University in 1999. At the conclusion of the very successful Pacific Rim Conference on Stellar Astrophysics held in Hong Kong University, members of the Sci entific Organizing Committee began planning for the next conference. We approached Professor Tan Lu of Nanjing University and Professor Tipei Li of the Institute of High Energy Physics about hosting a con ference in China. Th...
Anticipatory Learning Classifier Systems describes the state of the art of anticipatory learning classifier systems-adaptive rule learning systems that autonomously build anticipatory environmental models. An anticipatory model specifies all possible action-effects in an environment with respect to given situations. It can be used to simulate anticipatory adaptive behavior. Anticipatory Learning Classifier Systems highlights how anticipations influence cognitive systems and illustrates the use of anticipations for (1) faster reactivity, (2) adaptive behavior beyond reinforcement learning, (3) attentional mechanisms, (4) simulation of other agents and (5) the implementation of a motivational ...
IAU S240 focuses on recent advances across the broad field of binary star research.
A review of the new subject of extragalactic stellar astrophysics - for both graduate students and researchers working in astrophysics.
Rotation is ubiquitous at each step of stellar evolution, from star formation to the final stages, and it affects the course of evolution, the timescales and nucleosynthesis. Stellar rotation is also an essential prerequisite for the occurrence of Gamma-Ray Bursts. In this book the author thoroughly examines the basic mechanical and thermal effects of rotation, their influence on mass loss by stellar winds, the effects of differential rotation and its associated instabilities, the relation with magnetic fields and the evolution of the internal and surface rotation. Further, he discusses the numerous observational signatures of rotational effects obtained from spectroscopy and interferometric observations, as well as from chemical abundance determinations, helioseismology and asteroseismology, etc. On an introductory level, this book presents in a didactical way the basic concepts of stellar structure and evolution in "track 1" chapters. The other more specialized chapters form an advanced course on the graduate level and will further serve as a valuable reference work for professional astrophysicists.
The IAU Colloquium No. 59, "The effects of mass loss on Stellar Evolution" was held on September 15-19, 1980 at the International Centre for Theoretical Physics, Miramare, Trieste (Italy), under the auspices of the IAU Executive Co~ mittee and the Italian National Council of Research. The planning of this conference began two years ago du ring the IAU Symposium No. 83 "Mass loss and evolution of 0 type stars" (Qualicum Beach, Victoria, Canada) when we felt that mass loss and its effects on the evolution of stars was too broad a subject for being confined to 0 type stars only. Therefore we thought that a conference dealing with the general problem of mass loss across the whole HR diagram woul...
This review of the most up-to-date observational and theoretical information concerning the chemical evolution of the Milky Way compares the abundances derived from field stars and clusters, giving information on the abundances and dynamics of gas.
No part of the Hertzsprung-Russell diagram shows a more pronounced diversity of stellar types than the upper part, which contains the most luminous stars. Can one visualize a larger difference than between a luminous, young and extremely hot Of star, and a cool, evolved pulsating giant of the Mira type, or an S-type supergiant, or - again at the other side of the diagram - the compact nucleus of a planetary nebula? But there is order and unity in this apparent disorder! Virtually all types of bright stars are evolutionally related, in one way or the other. Evolution links bright stars. In many cases the evolution is speeded up by, or at least intimately related to various signs of stellar instability. Bright stars lose mass, either continuously or in dramatic sudden events, they vibrate or pulsate - and with these tenuous, gigantic objects this often happens in a most bizarre fashion. Sometimes the evolution goes so fast that fundamental changes are observable in the time span of a human's life - several of such cases have now been identified.