You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The book provides an accessible overview of audio signal processing, and enables readers to design and write algorithms for the analysis, synthesis, and manipulation of musical and acoustic signals for any programming language. It provides an overview of highly interdisciplinary topics developed in a simple but rigorous way, and described in a unified and formal language which focuses on determining discrete-time audio signal models. Readers can find within a self-contained volume basic topics ranging over different disciplines: mechanical acoustics, physical systems and linear and nonlinear models, with lumped and distributed parameters; described and developed with the same level of mathematical formalism, easy to understand and oriented to the development of algorithms. Topics include the fundamental concepts of acoustic mechanics and vibration; the design of filters and equalizers for sound signals, the so-called audio effects, abstract methods of sound synthesis, and finally, methods of synthesis by physical modeling.
Includes bibliographical references and index.
Designing Audio Effect Plugins in C++ presents everything you need to know about digital signal processing in an accessible way. Not just another theory-heavy digital signal processing book, nor another dull build-a-generic-database programming book, this book includes fully worked, downloadable code for dozens of professional audio effect plugins and practically presented algorithms. Sections include the basics of audio signal processing, the anatomy of a plugin, AAX, AU and VST3 programming guides; implementation details; and actual projects and code. More than 50 fully coded C++ audio signal-processing objects are included. Start with an intuitive and practical introduction to the digital...
Karlheinz Brandenburg and Mark Kahrs With the advent of multimedia, digital signal processing (DSP) of sound has emerged from the shadow of bandwidth limited speech processing. Today, the main appli cations of audio DSP are high quality audio coding and the digital generation and manipulation of music signals. They share common research topics including percep tual measurement techniques and analysis/synthesis methods. Smaller but nonetheless very important topics are hearing aids using signal processing technology and hardware architectures for digital signal processing of audio. In all these areas the last decade has seen a significant amount of application oriented research. The topics co...
The Handbook of Signal Processing in Acoustics brings together a wide range of perspectives from over 100 authors to reveal the interdisciplinary nature of the subject. It brings the key issues from both acoustics and signal processing into perspective and is a unique resource for experts and practitioners alike to find new ideas and techniques within the diversity of signal processing in acoustics.
Ken Pohlmann's Classic--Completely Updated From the basics to the cutting edge, Ken Pohlmann's Principles of Digital Audio is packed with vital information. Through three editions, this popular text has illuminated the frontiers of digital audio science. Now this completely updated and substantially revised Fourth Edition brings you the tools you need to capitalize on the explosive expansion of digital audio technologies. Widely used as a college text, and as a professional reference by computer and audio designers and enthusiasts, this comprehensive and highly readable sourcebook helps you: ⬢ Stay up-to-speed in a fast-moving field ⬢ Enter or advance a career in digital audio design, ne...
"Directory of members" published as pt. 2 of Apr. 1954- issue.
This book is a comprehensive survey of the mathematical concepts and principles of industrial mathematics. Its purpose is to provide students and professionals with an understanding of the fundamental mathematical principles used in Industrial Mathematics/OR in modeling problems and application solutions. All the concepts presented in each chapter have undergone the learning scrutiny of the author and his students. The illustrative material throughout the book was refined for student comprehension as the manuscript developed through its iterations, and the chapter exercises are refined from the previous year's exercises.
This textbook presents an introduction to signal processing for audio applications. The author’s approach posits that math is at the heart of audio processing and that it should not be simplified. He thus retains math as the core of signal processing and includes concepts of difference equations, convolution, and the Fourier Transform. Each of these is presented in a context where they make sense to the student and can readily be applied to build artifacts. Each chapter in the book builds on the previous ones, building a linear, coherent story. The book starts with a definition of sound and goes on to discuss digital audio signals, filters, The Fourier Transform, audio effects, spatial effects, audio equalizers, dynamic range control, and pitch estimation. The exercises in each chapter cover the application of the concepts to audio signals. The exercises are made specifically for Pure Data (Pd) although traditional software, such as MATLAB, can be used. The book is intended for students in media technology bachelor programs. The book is based on material the author developed teaching on the topic over a number of years.
The study of Euclidean distance matrices (EDMs) fundamentally asks what can be known geometrically given onlydistance information between points in Euclidean space. Each point may represent simply locationor, abstractly, any entity expressible as a vector in finite-dimensional Euclidean space.The answer to the question posed is that very much can be known about the points;the mathematics of this combined study of geometry and optimization is rich and deep.Throughout we cite beacons of historical accomplishment.The application of EDMs has already proven invaluable in discerning biological molecular conformation.The emerging practice of localization in wireless sensor networks, the global posi...