You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Organized as a mini-encyclopedia of infrared optoelectronic applications, this long awaited new edition of an industry standard updates and expands on the groundbreaking work of its predecessor. Pioneering experts, responsible for many advancements in the field, provide engineers with a fundamental understanding of semiconductor physics and the technical information needed to design infrared optoelectronic devices. Fully revised to reflect current developments in the field, Optoelectronics: Infrared-Visible-Ultraviolet Devices and Applications, Second Edition reviews relevant semiconductor fundamentals, including device physics, from an optoelectronic industry perspective. This easy-reading text provides a practical engineering introduction to optoelectronic LEDs and silicon sensor technology for the infrared, visible, and ultraviolet portion of the electromagnetic spectrum. Utilizing a practical and efficient engineering approach throughout, the text supplies design engineers and technical management with quick and uncluttered access to the technical information needed to design new systems.
This book shows there is a profound connection between information and entropy. Without this connection, information would be more difficult to apply to science. This book covers the connection and the application to modern optics and radar imaging. It shows that there exists a profound relationship between Einstein’s relativity theory and Schröinger’s quantum mechanics, by means of the uncertainty principle. In due of the uncertainty relation, this book shows that every bit of information takes time and energy to transfer, to create and to observe. The new edition contains 3 new chapters on radar imaging with optics, science in the myth of information, and time and the enigma of space.
Broadly tunable lasers continue to have a tremendous impact in many and diverse fields of science and technology. From a renaissance in laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Tunable Laser Applications describes the physics and architectures of widely applied tunable laser sources. Fully updated and ex
From its initial publication titled Laser Beam Scanning in 1985 to Handbook of Optical and Laser Scanning, now in its second edition, this reference has kept professionals and students at the forefront of optical scanning technology. Carefully and meticulously updated in each iteration, the book continues to be the most comprehensive scanning resource on the market. It examines the breadth and depth of subtopics in the field from a variety of perspectives. The Second Edition covers: Technologies such as piezoelectric devices Applications of laser scanning such as Ladar (laser radar) Underwater scanning and laser scanning in CTP As laser costs come down, and power and availability increase, t...
Fundamentals and Basic Optical Instruments includes thirteen chapters providing an introductory guide to the basics of optical engineering, instrumentation, and design. Topics include basic geometric optics, basic wave optics, and basic photon and quantum optics. Paraxial ray tracing, aberrations and optical design, and prisms and refractive optical components are included. Polarization and polarizing optical devices are covered, as well as optical instruments such as telescopes, microscopes, and spectrometers.
This books aims to present fundamental aspects of optical communication techniques and advanced modulation techniques and extensive applications of optical communications systems and networks employing single-mode optical fibers as the transmission system. New digital techqniues such as chromatic dispersion, polarization mode dispersion, nonlinear phase distortion effects, etc. will be discussed. Practical models for practice and understanding the behavior and dynamics of the devices and systems will be included.
New chapters and updates highlight the second edition of Laser Safety: Tools and Training. This text provides background information relating to lasers and laser safety, and examines the components of laser work and laser safety from a different perspective. Written by a working laser safety officer, the book considers ways to keep users, as well as those around them, safe. The author encourages readers to think beyond protective eyewear. As it relates to safety, he determines that if eyewear is required, then the laser system is not ideal. This book factors in optics, the vibration elements of the optical table, the power meter, and user training, elements that are not commonly considered i...
The definition of optical material has expanded in recent years, largely because of IT advances that have led to rapid growth in optoelectronics applications. Helping to explain this evolution, Optical Materials and Applications presents contributions from leading experts who explore the basic concepts of optical materials and the many typical applications in which they are used. An invaluable reference for readers ranging from professionals to technical managers to graduate engineering students, this book covers everything from traditional principles to more cutting-edge topics. It also details recent developmental trends, with a focus on basic optical properties of material. Key topics inc...
This new edition details the important features of beam shaping and exposes the subtleties of the theory and techniques that are best demonstrated through proven applications. New chapters cover illumination light shaping in optical lithography; optical micro-manipulation of live mammalian cells through trapping, sorting, and transfection; and laser beam shaping through fiber optic beam delivery. The book discusses applications in lithography, laser printing, optical data storage, stable isotope separation, and spatially dispersive lasers. It also provides a history of the field and includes extensive references.
Suitable as either a student text or professional reference, Lightwave Engineering addresses the behavior of electromagnetic waves and the propagation of light, which forms the basis of the wide-ranging field of optoelectronics. Divided into two parts, the book first gives a comprehensive introduction to lightwave engineering using plane wave and then offers an in-depth analysis of lightwave propagation in terms of electromagnetic theory. Using the language of mathematics to explain natural phenomena, the book includes numerous illustrative figures that help readers develop an intuitive understanding of light propagation. It also provides helpful equations and outlines their exact derivation...