Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems
  • Language: en
  • Pages: 186

Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems

This book presents comprehensive treatment of a rapidly developing area with many potential applications: the theory of monotone dynamical systems and the theory of competitive and cooperative differential equations. The primary aim is to provide potential users of the theory with techniques, results, and ideas useful in applications, while at the same time providing rigorous proofs. Among the topics discussed in the book are continuous-time monotone dynamical systems, and quasimonotone and nonquasimonotone delay differential equations. The book closes with a discussion of applications to quasimonotone systems of reaction-diffusion type. Throughout the book, applications of the theory to many mathematical models arising in biology are discussed. Requiring a background in dynamical systems at the level of a first graduate course, this book is useful to graduate students and researchers working in the theory of dynamical systems and its applications.

An Introduction To Chaotic Dynamical Systems
  • Language: en
  • Pages: 280

An Introduction To Chaotic Dynamical Systems

  • Type: Book
  • -
  • Published: 2018-03-09
  • -
  • Publisher: CRC Press

The study of nonlinear dynamical systems has exploded in the past 25 years, and Robert L. Devaney has made these advanced research developments accessible to undergraduate and graduate mathematics students as well as researchers in other disciplines with the introduction of this widely praised book. In this second edition of his best-selling text, Devaney includes new material on the orbit diagram fro maps of the interval and the Mandelbrot set, as well as striking color photos illustrating both Julia and Mandelbrot sets. This book assumes no prior acquaintance with advanced mathematical topics such as measure theory, topology, and differential geometry. Assuming only a knowledge of calculus, Devaney introduces many of the basic concepts of modern dynamical systems theory and leads the reader to the point of current research in several areas.

A History in Sum
  • Language: en
  • Pages: 281

A History in Sum

In the twentieth century, American mathematicians began to make critical advances in a field previously dominated by Europeans. Harvard's mathematics department was at the center of these developments. A History in Sum is an inviting account of the pioneers who trailblazed a distinctly American tradition of mathematics--in algebraic geometry, complex analysis, and other esoteric subdisciplines that are rarely written about outside of journal articles or advanced textbooks. The heady mathematical concepts that emerged, and the men and women who shaped them, are described here in lively, accessible prose. The story begins in 1825, when a precocious sixteen-year-old freshman, Benjamin Peirce, a...

An Introduction to Infinite Ergodic Theory
  • Language: en
  • Pages: 298

An Introduction to Infinite Ergodic Theory

Infinite ergodic theory is the study of measure preserving transformations of infinite measure spaces. The book focuses on properties specific to infinite measure preserving transformations. The work begins with an introduction to basic nonsingular ergodic theory, including recurrence behaviour, existence of invariant measures, ergodic theorems, and spectral theory. A wide range of possible "ergodic behaviour" is catalogued in the third chapter mainly according to the yardsticks of intrinsic normalizing constants, laws of large numbers, and return sequences. The rest of the book consists of illustrations of these phenomena, including Markov maps, inner functions, and cocycles and skew products. One chapter presents a start on the classification theory.

Knotted Surfaces and Their Diagrams
  • Language: en
  • Pages: 273

Knotted Surfaces and Their Diagrams

In this book the authors develop the theory of knotted surfaces in analogy with the classical case of knotted curves in 3-dimensional space. In the first chapter knotted surface diagrams are defined and exemplified; these are generic surfaces in 3-space with crossing information given. The diagrams are further enhanced to give alternative descriptions. A knotted surface can be described as a movie, as a kind of labeled planar graph, or as a sequence of words in which successive words are related by grammatical changes. In the second chapter, the theory of Reidemeister moves is developed in the various contexts. The authors show how to unknot intricate examples using these moves. The third ch...

The Theory of Valuations
  • Language: en
  • Pages: 266

The Theory of Valuations

description not available right now.

The Theory of Rings
  • Language: en
  • Pages: 160

The Theory of Rings

The book is mainly concerned with the theory of rings in which both maximal and minimal conditions hold for ideals (except in the last chapter, where rings of the type of a maximal order in an algebra are considered). The central idea consists of representing rings as rings of endomorphisms of an additive group, which can be achieved by means of the regular representation.

A Concrete Introduction to Higher Algebra
  • Language: en
  • Pages: 592

A Concrete Introduction to Higher Algebra

This book is an informal and readable introduction to higher algebra at the post-calculus level. The concepts of ring and field are introduced through study of the familiar examples of the integers and polynomials. The new examples and theory are built in a well-motivated fashion and made relevant by many applications - to cryptography, coding, integration, history of mathematics, and especially to elementary and computational number theory. The later chapters include expositions of Rabiin's probabilistic primality test, quadratic reciprocity, and the classification of finite fields. Over 900 exercises are found throughout the book.

The Convenient Setting of Global Analysis
  • Language: en
  • Pages: 631

The Convenient Setting of Global Analysis

This book lays the foundations of differential calculus in infinite dimensions and discusses those applications in infinite dimensional differential geometry and global analysis not involving Sobolev completions and fixed point theory. The approach is simple: a mapping is called smooth if it maps smooth curves to smooth curves. Up to Fr‚chet spaces, this notion of smoothness coincides with all known reasonable concepts. In the same spirit, calculus of holomorphic mappings (including Hartogs' theorem and holomorphic uniform boundedness theorems) and calculus of real analytic mappings are developed. Existence of smooth partitions of unity, the foundations of manifold theory in infinite dimensions, the relation between tangent vectors and derivations, and differential forms are discussed thoroughly. Special emphasis is given to the notion of regular infinite dimensional Lie groups. Many applications of this theory are included: manifolds of smooth mappings, groups of diffeomorphisms, geodesics on spaces of Riemannian metrics, direct limit manifolds, perturbation theory of operators, and differentiability questions of infinite dimensional representations.

Introduction to the Theory of Algebraic Functions of One Variable
  • Language: en
  • Pages: 204

Introduction to the Theory of Algebraic Functions of One Variable

Presents an approach to algebraic geometry of curves that is treated as the theory of algebraic functions on the curve. This book discusses such topics as the theory of divisors on a curve, the Riemann-Roch theorem, $p$-adic completion, and extensions of the fields of functions (covering theory) and of the fields of constants.