You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The traditional biennial international conference of abelian group theorists was held in August, 1987 at the University of Western Australia in Perth. With some 40 participants from five continents, the conference yielded a variety of papers indicating the healthy state of the field and showing the significant advances made in many areas since the last such conference in Oberwolfach in 1985. This volume brings together the papers presented at the Perth conference, together with a few others submitted by those unable to attend. The first section of the book is concerned with the structure of $p$-groups. It begins with a survey on H. Ulm's contributions to abelian group theory and related area...
Presents the proceedings of AMS-IMS-SIAM Summer Research Conference on Categories in Computer Science and Logic that was held at the University of Colorado in Boulder. This book discusses the use of category theory in formalizing aspects of computer programming and program design.
Measurement error models describe functional relationships among variables observed, subject to random errors of measurement. This book treats general aspects of the measurement problem and features a discussion of the history of measurement error models.
Contains an array of both expository and research articles which represents the proceedings of a conference on commutative harmonic analysis, held in July 1987 and sponsored by St Lawrence University and GTE Corporation. This book is suitable for those beginning research in commutative harmonic analysis.
This volume contains the proceedings of the AMS-IMS-SIAM Summer Research Conference on ``Geometric and Topological Invariants of Elliptic Operators,'' held in August 1988 at Bowdoin College. Some of the themes covered at the conference and appearing in the articles are: the use of more sophisticated asymptotic methods to obtain index theorems, the study of the $\eta$ invariant and analytic torsion, and index theory on open manifolds and foliated manifolds. The current state of noncommutative differential geometry, as well as operator algebraic and $K$-theoretic methods, are also presented in several the articles. This book will be useful to researchers in index theory, operator algebras, foliations, and mathematical physics. Topologists and geometers are also likely to find useful the view the book provides of recent work in this area. In addition, because of the expository nature of several of the articles, it will be useful to graduate students interested in working in these areas.
This volume contains the proceedings of the AMS Special Session on Invariant Theory, held in Denton, Texas in the fall of 1986; also included are several invited papers in this area. The purpose of the conference was to exchange ideas on recent developments in algebraic group actions on algebraic varieties. The papers fall into three main categories: actions of linear algebraic groups; flag manifolds and invariant theory; and representation theory and invariant theory. This book is likely to find a wide audience, for invariant theory is connected to a range of mathematical fields, such as algebraic groups, algebraic geometry, commutative algebra, and representation theory.
The international symposium on number theory and analysis in memory of the late famous Chinese mathematician Professor Hua Loo Keng took place in August 1988 at the Tsinghua University in Beijing. Excellent survey lectures and expositions of the most recent results in number theory and analysis were given by experts from all over the world. While Volume I focuses on number theory, Volume II deals mainly with several complex variables, differential geometry and classical complex analysis. Both volumes also include two fascinating accounts of Professor Hua Loo Keng's life and work by Professor S. Iyanaga and Professor Wang Yuan. Highlights in Volume I: D.A. Hejhal: Eigenvalues of the Laplacian...
This book is a self-contained monograph on spectral theory for non-compact Riemann surfaces, focused on the infinite-volume case. By focusing on the scattering theory of hyperbolic surfaces, this work provides a compelling introductory example which will be accessible to a broad audience. The book opens with an introduction to the geometry of hyperbolic surfaces. Then a thorough development of the spectral theory of a geometrically finite hyperbolic surface of infinite volume is given. The final sections include recent developments for which no thorough account exists.