You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
A collection of solicited and refereed articles from distinguished researchers across the field of stochastic analysis and its application to finance. It covers the topics ranging from Markov processes, backward stochastic differential equations, stochastic partial differential equations, and stochastic control, to risk measure and risk theory.
Rigorous error estimates for amplitude equations are well known for deterministic PDEs, and there is a large body of literature over the past two decades. However, there seems to be a lack of literature for stochastic equations, although the theory is being successfully used in the applied community, such as for convective instabilities, without reliable error estimates at hand. This book is the first step in closing this gap.The author provides details about the reduction of dynamics to more simpler equations via amplitude or modulation equations, which relies on the natural separation of time-scales present near a change of stability.For students, the book provides a lucid introduction to the subject highlighting the new tools necessary for stochastic equations, while serving as an excellent guide to recent research.
The first paper in the volume, Stochastic Evolution Equations by N V Krylov and B L Rozovskii, was originally published in Russian in 1979. After more than a quarter-century, this paper remains a standard reference in the field of stochastic partial differential equations (SPDEs) and continues to attract attention of mathematicians of all generations, because, together with a short but thorough introduction to SPDEs, it presents a number of optimal and essentially non-improvable results about solvability for a large class of both linear and non-linear equations.
The volume is dedicated to Professor David Elworthy to celebrate his fundamental contribution and exceptional influence on stochastic analysis and related fields. Stochastic analysis has been profoundly developed as a vital fundamental research area in mathematics in recent decades. It has been discovered to have intrinsic connections with many other areas of mathematics such as partial differential equations, functional analysis, topology, differential geometry, dynamical systems, etc. Mathematicians developed many mathematical tools in stochastic analysis to understand and model random phenomena in physics, biology, finance, fluid, environment science, etc. This volume contains 12 comprehe...
This is an introductory textbook about nonlinear dynamics of PDEs, with a focus on problems over unbounded domains and modulation equations. The presentation is example-oriented, and new mathematical tools are developed step by step, giving insight into some important classes of nonlinear PDEs and nonlinear dynamics phenomena which may occur in PDEs. The book consists of four parts. Parts I and II are introductions to finite- and infinite-dimensional dynamics defined by ODEs and by PDEs over bounded domains, respectively, including the basics of bifurcation and attractor theory. Part III introduces PDEs on the real line, including the Korteweg-de Vries equation, the Nonlinear Schrödinger eq...
This book is a compilation of high quality papers focussing on five major areas of active development in the wide field of differential equations: dynamical systems, infinite dimensions, global attractors and stability, computational aspects, and applications. It is a valuable reference for researchers in diverse disciplines, ranging from mathematics through physics, engineering, chemistry, nonlinear science to the life sciences.
Meshfree approximation methods are a relatively new area of research, and there are only a few books covering it at present. Whereas other works focus almost entirely on theoretical aspects or applications in the engineering field, this book provides the salient theoretical results needed for a basic understanding of meshfree approximation methods.The emphasis here is on a hands-on approach that includes MATLAB routines for all basic operations. Meshfree approximation methods, such as radial basis function and moving least squares method, are discussed from a scattered data approximation and partial differential equations point of view. A good balance is supplied between the necessary theory and implementation in terms of many MATLAB programs, with examples and applications to illustrate key points. Used as class notes for graduate courses at Northwestern University, Illinois Institute of Technology, and Vanderbilt University, this book will appeal to both mathematics and engineering graduate students.
Stochastic dynamical systems and stochastic analysis are of great interests not only to mathematicians but also to scientists in other areas. Stochastic dynamical systems tools for modeling and simulation are highly demanded in investigating complex phenomena in, for example, environmental and geophysical sciences, materials science, life sciences, physical and chemical sciences, finance and economics.The volume reflects an essentially timely and interesting subject and offers reviews on the recent and new developments in stochastic dynamics and stochastic analysis, and also some possible future research directions. Presenting a dozen chapters of survey papers and research by leading experts in the subject, the volume is written with a wide audience in mind ranging from graduate students, junior researchers to professionals of other specializations who are interested in the subject.
Focuses on fields such as consensus and voting theory, clustering, location theory, mathematical biology, and optimization that have seen an upsurge of exciting works over the years using discrete models in modern applications. This book discusses advances in the fields, highlighting the approach of cross-fertilization of ideas across disciplines.
This Festschrift contains five research surveys and thirty-four shorter contributions by participants of the conference ''Stochastic Partial Differential Equations and Related Fields'' hosted by the Faculty of Mathematics at Bielefeld University, October 10–14, 2016. The conference, attended by more than 140 participants, including PostDocs and PhD students, was held both to honor Michael Röckner's contributions to the field on the occasion of his 60th birthday and to bring together leading scientists and young researchers to present the current state of the art and promising future developments. Each article introduces a well-described field related to Stochastic Partial Differential Equ...