Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Abstraction, Reformulation, and Approximation
  • Language: en
  • Pages: 360

Abstraction, Reformulation, and Approximation

  • Type: Book
  • -
  • Published: 2003-08-02
  • -
  • Publisher: Springer

It has been recognized since the inception of Artificial Intelligence (AI) that abstractions, problem reformulations, and approximations (AR&A) are central to human common sense reasoning and problem solving and to the ability of systems to reason effectively in complex domains. AR&A techniques have been used to solve a variety of tasks, including automatic programming, constraint satisfaction, design, diagnosis, machine learning, search, planning, reasoning, game playing, scheduling, and theorem proving. The primary purpose of AR&A techniques in such settings is to overcome computational intractability. In addition, AR&A techniques are useful for accelerating learning and for summarizing se...

Reinforcement Learning
  • Language: en
  • Pages: 517

Reinforcement Learning

Reinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcement and enable a machine to learn by itself. Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learn numerous algorithms, and benefit from dedicated chapters on deploying RL solutions to product...

Deep Reinforcement Learning
  • Language: en
  • Pages: 414

Deep Reinforcement Learning

Deep reinforcement learning has attracted considerable attention recently. Impressive results have been achieved in such diverse fields as autonomous driving, game playing, molecular recombination, and robotics. In all these fields, computer programs have taught themselves to understand problems that were previously considered to be very difficult. In the game of Go, the program AlphaGo has even learned to outmatch three of the world’s leading players.Deep reinforcement learning takes its inspiration from the fields of biology and psychology. Biology has inspired the creation of artificial neural networks and deep learning, while psychology studies how animals and humans learn, and how sub...

Distributional Reinforcement Learning
  • Language: en
  • Pages: 385

Distributional Reinforcement Learning

  • Type: Book
  • -
  • Published: 2023-05-30
  • -
  • Publisher: MIT Press

The first comprehensive guide to distributional reinforcement learning, providing a new mathematical formalism for thinking about decisions from a probabilistic perspective. Distributional reinforcement learning is a new mathematical formalism for thinking about decisions. Going beyond the common approach to reinforcement learning and expected values, it focuses on the total reward or return obtained as a consequence of an agent's choices—specifically, how this return behaves from a probabilistic perspective. In this first comprehensive guide to distributional reinforcement learning, Marc G. Bellemare, Will Dabney, and Mark Rowland, who spearheaded development of the field, present its key...

Experimental Algorithmics
  • Language: en
  • Pages: 295

Experimental Algorithmics

  • Type: Book
  • -
  • Published: 2003-07-01
  • -
  • Publisher: Springer

Experimental algorithmics, as its name indicates, combines algorithmic work and experimentation: algorithms are not just designed, but also implemented and tested on a variety of instances. Perhaps the most important lesson in this process is that designing an algorithm is but the first step in the process of developing robust and efficient software for applications. Based on a seminar held at Dagstuhl Castle, Germany in September 2000, this state-of-the-art survey presents a coherent survey of the work done in the area so far. The 11 carefully reviewed chapters provide complete coverage of all current topics in experimental algorithmics.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 797

Machine Learning and Knowledge Discovery in Databases

The 5-volume proceedings, LNAI 12457 until 12461 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2020, which was held during September 14-18, 2020. The conference was planned to take place in Ghent, Belgium, but had to change to an online format due to the COVID-19 pandemic. The 232 full papers and 10 demo papers presented in this volume were carefully reviewed and selected for inclusion in the proceedings. The volumes are organized in topical sections as follows: Part I: Pattern Mining; clustering; privacy and fairness; (social) network analysis and computational social science; dimensionality reduction and ...

ECAI 2023
  • Language: en
  • Pages: 3328

ECAI 2023

  • Type: Book
  • -
  • Published: 2023-10-18
  • -
  • Publisher: IOS Press

Artificial intelligence, or AI, now affects the day-to-day life of almost everyone on the planet, and continues to be a perennial hot topic in the news. This book presents the proceedings of ECAI 2023, the 26th European Conference on Artificial Intelligence, and of PAIS 2023, the 12th Conference on Prestigious Applications of Intelligent Systems, held from 30 September to 4 October 2023 and on 3 October 2023 respectively in Kraków, Poland. Since 1974, ECAI has been the premier venue for presenting AI research in Europe, and this annual conference has become the place for researchers and practitioners of AI to discuss the latest trends and challenges in all subfields of AI, and to demonstrat...

Robot Learning from Human Demonstration
  • Language: en
  • Pages: 109

Robot Learning from Human Demonstration

Learning from Demonstration (LfD) explores techniques for learning a task policy from examples provided by a human teacher. The field of LfD has grown into an extensive body of literature over the past 30 years, with a wide variety of approaches for encoding human demonstrations and modeling skills and tasks. Additionally, we have recently seen a focus on gathering data from non-expert human teachers (i.e., domain experts but not robotics experts). In this book, we provide an introduction to the field with a focus on the unique technical challenges associated with designing robots that learn from naive human teachers. We begin, in the introduction, with a unification of the various terminolo...

FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science
  • Language: en
  • Pages: 442

FSTTCS 2006: Foundations of Software Technology and Theoretical Computer Science

  • Type: Book
  • -
  • Published: 2006-11-30
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the 26th International Conference on the Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2006, held in Kolkata, India, in December 2006. It contains 38 papers that cover a broad variety of current topics from the theory of computing, ranging from formal methods, discrete mathematics, complexity theory, and automata theory to theoretical computer science in general.