You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Structure and function of the components of the photosynthetic apparatus and the molecular biology of these components have become the dominant themes in advances in our understanding of the light reactions of oxygenic photosynthesis. Oxygenic Photosynthesis: The Light Reactions presents our current understanding of these reactions in thylakoid membranes. Topics covered include the photosystems, the cytochrome b6-f complex, plastocyanin, ferredoxin, FNR, light-harvesting complexes, and the coupling factor. Chapters are also devoted to the structure of thylakoid membranes, their lipid composition, and their biogenesis. Updates on the crystal structures of cytochrome f, ATP synthase and photosystem I are presented and a section on molecular biology and evolution of the photosynthetic apparatus is also included. The chapters in this book provide a comprehensive overview of photosynthetic reactions in eukaryotic thylakoids. The book is intended for a wide audience, including graduate students and researchers active in this field, as well as those individuals who have interests in plant biochemistry and molecular biology or plant physiology.
Since photosynthetic performance is a fundamental determinant of yield in the vast majority of crops, an understanding of the factors limiting photosynthetic productivity has a crucial role to play in crop improvement programmes. Photosynthesis, unlike the majority of physiological processes in plants, has been the subject of extensive studies at the molecular level for many years. This reductionist approach has resulted in the development of an impressive and detailed understanding of the mechanisms of light capture, energy transduction and carbohydrate biosynthesis, processes that are clearly central to the success of the plant and the productivity of crops. This volume examines in the widest context the factors determining the photosynthetic performance of crops. The emphasis throughout the book is on the setting for photosynthesis rather than the fundamental process itself. The book will prove useful to a wide range of plant scientists, and will encourage a more rapid integration of disciplines in the quest to understand and improve the productivity of crops by the procedures of classical breeding and genetic manipulation.
This is a thorough study of photosynthetic mechanisms from cells to leaves, crown, and canopy. The authors question whether photosynthetic adaptations take place primarily at the metabolic and biochemical level or through changes in structure and form, or both. The text goes on to analyze the relative importance of genes that control metabolic and light reactions, and the structure, arrangement, and orientation of photosynthesis.
The most mysterious part of photosynthesis yet the most important for all aerobic life on Earth (including ourselves) is how green plants, algae and cyanobacteria make atmospheric oxygen from water. This thermodynamically difficult process is only achieved in Nature by the unique pigment/protein complex known as Photosystem II, using sunlight to power the reaction. The present volume contains 34 comprehensive chapters authored by 75 scientific experts from around the world. It gives an up-to-date account on all what is currently known about the molecular biology, biochemistry, biophysics and physiology of Photosystem II. The book is divided into several parts detailing the protein constituen...
The fascinating machinery that life uses to harness energy is the focus of this volume of the Advances in Photosynthesis and Respiration series. Experts in the field communicate their insights into the mechanisms that govern biological energy conversion from the atomic scale to the physiological integration within organisms. By leveraging the power of current structural techniques the authors reveal the inner workings of life.
Photosynthesis, Volume 1: Energy Conversion by Plants and Bacteria tackles the conversion of light energy into the production of ATP and NADPH in both plants and bacteria. The various aspects of the energy conversion process in plants and bacteria are thoroughly discussed in this volume. The concepts and terms employed in the book are used integrally, except when a process is unique to one system. This book, which comprises of six parts, emphasizes both the biochemical and biophysical aspects of photosynthesis. It includes a review of the historical development of major concepts, an analysis of experimental data, and an exposition of subsequent findings. The first part of this book serves as the foundation of basic terms and concepts that will be used all throughout in this book. Part II deals with the structure and function, whereas Part III with the primary photochemistry. Part IV is about electron transport, while Part V focuses on photophosphorylation. The last part deals with the biosynthesis of pigments. This book will be a great reference for researchers. It will also be an introductory work for students in cell biology, physiology, biochemistry, and biophysics.
Continuous discoveries in plant and crop physiology have resulted in an abundance of new information since the publication of the third edition of the Handbook of Plant and Crop Physiology. Following its predecessors, the fourth edition of this well-regarded handbook offers a unique, comprehensive, and complete collection of topics in the field of plant and crop physiology. Divided into eleven sections, for easy access of information, this edition contains more than 90 percent new material, substantial revisions, and two new sections. The handbook covers the physiology of plant and crop growth and development, cellular and molecular aspects, plant genetics and production processes. The book ...
Asking Google for different applications of electrolysis, interesting results can be noticed: electrolysis and hair removal - about 284 000 000 web pages, water electrolysis - about 7 440 000 web pages and industrial electrolysis - about 2 540 000 results. In this book three most important applications of technological electrolysis are discussed - water electrolysis (hydrogen production), industrial electrolysis and environmental electrolysis. Authors of the chapters are recognized specialists in their respective research fields and the presented material is not only from reviews and literature sources, but also original results. We hope that the reader will find useful information in the chapters of this book and are certain that the science can reveal unexpected discoveries even tomorrow, if current progress is at hand or on a shelf.
Plant productivity depends upon the photosynthetic conversion of the light energy into chemical energy stored in the biomass of plants. An intermediate step in this energy conversion process is electron transfer and proton translocation. At present, several research groups are working on projects that are expected to lead to rapid improvement of our understanding of the photosynthetic process. This book is a compilation of the work being done on the applications of molecular biology and bioenergetics of photosynthesis.
Readhowyouwant 16 point large print. Sea level rise will be an unavoidable part of our future, no matter what we do. Even if we stopped all carbon dioxide emissions today, the seas will rise three feet by 2050 and nine feet by 2100. This- not drought, species extinction, or excessive heat waves - will be the most dramatic effect of global warming.