You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume emphasizes the intracellular consequences of DNA damage, describing procedures for analysis of checkpoint responses, DNA repair in vivo, replication fork encounter of DNA damage, as well as biological methods for analysis of mutation production and chromosome rearrangements. It also describes molecular methods for analysis of a number of genome maintenance activities including DNA ligases, helicases, and single-strand binding proteins.*Part B of a 2-part series*Addresses DNA maintenance enzymes*Discusses damage signaling*Presents In vivo analysis of DNA repair*Covers mutation and chromosome rearrangements
Stands as the most comprehensive guide to the subject-covering every essential topic related to DNA damage identification and repair. Covering a wide array of topics from bacteria to human cells, this book summarizes recent developments in DNA damage repair and recognition while providing timely reviews on the molecular mechanisms employe
Poly (ADP-ribose) polymerase (PARP), also termed poly (ADP-ribose) synthetase (PARS) is a nuclear enzyme with a wide range of functions, including regulation of DNA repair, cell differentiation, and gene expression. More than a decade after the identification of PARP-like enzymatic activities in mammalian cells, a novel role was proposed for this e
This is the most comprehensive, up-to-date reference on this post-translational modification of proteins, which is intimately linked with DNA repair, maintenance of genomic stability, transcriptional regulation, cell death and a variety of other cellular phenomena as well as with a variety of pathophysiological conditions, including ischemia-reperfusion damage, Parkinson’s disease, Type I diabetes mellitus, hemorrhagic and septic shock and other inflammatory conditions. Richly illustrated, it offers 19 chapters written by international experts.
Considering the current interest in cellular regulation and intracellular signalling systems, it is surprising that the contribution of ADP-ribosylation reactions to the modulation of a variety of specific cell processes, in parallel with other post-translational modifications such as phosphorylation, has not been generally recognized. While it is not feasible to cover all aspects of ADP-ribosylation, the thirty-one articles contained in this volume provide a valuable overview of recent progress in the field within the context of cell control mechanisms. For the convenience of the reader, the various topics have been grouped into several sections: (a) poly(ADP-ribosyl)ation; (b) mono-ADP-rib...
This volume contains edited contributions from the speakers at the NATO Advanced Research Workshop on "DNA Repair Mechanisms and Their Biological Implications in Mammalian Cells" held October 1-6, 1988, at the Abbaye Royale de Fontevraud, Fontevraud France. The meeting was dedicated to Paul Howard-Flanders (Yale University, New Haven, CT. , 1919-1988), whose seminal con tributions to the DNA repair field include the cO-discovery of the excision repair pathway, the elucidation of post-repli cation repair in E. coli, the isolation of the lexA and recC mutants, and his extensive work on the enzymology of RecA. A plethora of recent developments in DNA repair mechan isms and related processes in mammalian cells have advanced our understanding of this field in a number of different areas and have given new emphasis to the ways these systems both resemble DNA repair processes in other groups of organisms in some respects yet are strikingly different from them in others. Within the past decade there have been a number of international conferences on DNA damage and repair mechanisms but none has been focused on these processes in mammalian cells.
Focusing on what has been one of the driving forces behind the development of lab-on-a-chip devices, Separation Methods in Microanalytical Systems explores the implementation, realization, and operation of separation techniques and related complex workflows on microfabricated devices. The book details the design, manufacture, and integration of diverse components needed to perform an entire analytical procedure on a single miniaturized device. This volume is valuable reference for scientists and engineers anticipating the demand for function-specific chemical separation systems in biomedical diagnostics, environmental monitoring, and drug discovery applications.
PARP Inhibitors for Cancer Therapy provides a comprehensive overview of the role of PARP in cancer therapy. The volume covers the history of the discovery of PARP (poly ADP ribose polymerase) and its role in DNA repair. In addition, a description of discovery of the PARP family, and other DNA maintenance-associated PARPs will also be discussed. The volume also features a section on accessible chemistry behind the development of inhibitors. PARP inhibitors are a group of pharmacological inhibitors that are a particularly good target for cancer therapy. PARP plays a pivotal role in DNA repair and may contribute to the therapeutic resistance to DNA damaging agents used to treat cancer. Researchers have learned a tremendous amount about the biology of PARP and how tumour-specific defects in DNA repair can be exploited by PARPi. The “synthetic lethality” of PARPi is an exciting concept for cancer therapy and has led to a heightened activity in this area.
This monograph is dedicated to one of the discoverers of poly(ADP ribose), Professor Paul Mandel, from the Centre de Neurochimie in Strasbourg. We would like to congratulate him for his distinguished contributions to the field of poly(ADP-ribosyl)ation and express our gratitude for his support in the last years and particularly for his encouragement for the organization of this meeting. Poly(ADP-ribose) was discovered more than 25 years ago. Since then, excellent progress has been made on the study of the mechanisms of poly(ADP ribose) reaction. The last five years have been particularly exciting since the development of various molecular biology techniques has revealed the complex nature of this multifunctional enzyme. Looking at the contributions presented at this meeting, it becomes obvious that more work at the molecular level is needed. Most likely, these experiments will shed some light on the functions of poly(ADP-ribose), but further ~iophysical studies will still be required to fully understand this complex enzymatic system.
This special issue of Molecular and Cellular Biochemistry contains twenty-two selected research papers and reviews from a total of one hundred and ten presentations given at the 12th International Symposium on ADP-ribosylation Reactions: From Bacterial Pathogenesis to Cancer, held in Cancun, Mexico, May 10-14, 1997. The Symposium was hosted by the Sociedad Mexicana de Bioquimica and was sponsored by the University of North Texas Health Science Center, Fort Worth, TX, USA. This volume provides a state-of-the-art source of information for basic scientists and clinicians who are interested in the molecular, biochemical, and cellular aspects of protein-(ADP-ribose) transfer reactions in human health and disease.