You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
In recent years, tremendous research has been devoted to the design of database systems for real-time applications, called real-time database systems (RTDBS), where transactions are associated with deadlines on their completion times, and some of the data objects in the database are associated with temporal constraints on their validity. Examples of important applications of RTDBS include stock trading systems, navigation systems and computer integrated manufacturing. Different transaction scheduling algorithms and concurrency control protocols have been proposed to satisfy transaction timing data temporal constraints. Other design issues important to the performance of a RTDBS are buffer management, index accesses and I/O scheduling. Real-Time Database Systems: Architecture and Techniques summarizes important research results in this area, and serves as an excellent reference for practitioners, researchers and educators of real-time systems and database systems.
This book constitutes the refereed post-proceedings of the 9th International Conference on Principles of Distributed Systems, OPODIS 2005, held in Pisa, Italy in December 2005. The volume presents 30 revised full papers and abstracts of 2 invited talks. The papers are organized in topical sections on nonblocking synchronization, fault-tolerant broadcast and consensus, self-stabilizing systems, peer-to-peer systems and collaborative environments, sensor networks and mobile computing, security and verification, real-time systems, and peer-to-peer systems.
This book constitutes the thoroughly refereed post-proceedings of the 9th International Conference on Real-Time and Embedded Systems and Applications, RTCSA 2003, held in Tainan, Taiwan, in February 2003. The 28 revised full papers and 9 revised short papers presented were carefully reviewed and selected for inclusion in the book. The papers are organized in topical sections on scheduling, networking and communication, embedded systems and environments, pervasive and ubiquitous computing, systems and architectures, resource management, file systems and databases, performance analysis, and tools and development.
Hard real-time systems are very predictable, but not sufficiently flexible to adapt to dynamic situations. They are built under pessimistic assumptions to cope with worst-case scenarios, so they often waste resources. Soft real-time systems are built to reduce resource consumption, tolerate overloads and adapt to system changes. They are also more suited to novel applications of real-time technology, such as multimedia systems, monitoring apparatuses, telecommunication networks, mobile robotics, virtual reality, and interactive computer games. This unique monograph provides concrete methods for building flexible, predictable soft real-time systems, in order to optimize resources and reduce costs. It is an invaluable reference for developers, as well as researchers and students in Computer Science.
This fascinating new work comes complete with more than 100 illustrations and a detailed practical prototype. It explores the domains encountered when designing a distributed embedded computer control system as an integrated whole. Basic issues about real-time systems and their properties, especially safety, are examined first. Then, system and hardware architectures are dealt with, along with programming issues, embodying desired properties, basic language subsets, object orientation and language support for hardware and software specifications.
This updated edition offers an indispensable exposition on real-time computing, with particular emphasis on predictable scheduling algorithms. It introduces the fundamental concepts of real-time computing, demonstrates the most significant results in the field, and provides the essential methodologies for designing predictable computing systems used to support time-critical control applications. Along with an in-depth guide to the available approaches for the implementation and analysis of real-time applications, this revised edition contains a close examination of recent developments in real-time systems, including limited preemptive scheduling, resource reservation techniques, overload handling algorithms, and adaptive scheduling techniques. This volume serves as a fundamental advanced-level textbook. Each chapter provides basic concepts, which are followed by algorithms, illustrated with concrete examples, figures and tables. Exercises and solutions are provided to enhance self-study, making this an excellent reference for those interested in real-time computing for designing and/or developing predictable control applications.
Today, many embedded or cyber-physical systems, e.g., in the automotive domain, comprise several control applications, sharing the same platform. It is well known that such resource sharing leads to complex temporal behaviors that degrades the quality of control, and more importantly, may even jeopardize stability in the worst case, if not properly taken into account. In this thesis, we consider embedded control or cyber-physical systems, where several control applications share the same processing unit. The focus is on the control-scheduling co-design problem, where the controller and scheduling parameters are jointly optimized. The fundamental difference between control applications and tr...
Event-Triggered and Time-Triggered Control Paradigms presents a valuable survey about existing architectures for safety-critical applications and discusses the issues that must be considered when moving from a federated to an integrated architecture. The book focuses on one key topic - the amalgamation of the event-triggered and the time-triggered control paradigm into a coherent integrated architecture. The architecture provides for the integration of independent distributed application subsystems by introducing multi-criticality nodes and virtual networks of known temporal properties. The feasibility and the tangible advantages of this new architecture are demonstrated with practical examples taken from the automotive industry. Event-Triggered and Time-Triggered Control Paradigms offers significant insights into the architecture and design of integrated embedded systems, both at the conceptual and at the practical level.
This book constitues the refereed proceedings of the 6th International Workshop on Hybrid Systems: Computation and Control, HSCC 2003, held in Prague, Czech Republic, in April 2003. The 36 revised full papers presented were carefully reviewed and selected from 75 submissions. All current issues in hybrid systems are addressed including formal methods for analysis and control, computational tools, as well as innovative applications in various fields such as automotive control, the immune system, electrical circuits, operating systems, and human brains.