You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book explores the study of singular spaces using techniques from areas within geometry and topology and the interactions among them.
Quantum cohomology, the theory of Frobenius manifolds and the relations to integrable systems are flourishing areas since the early 90's. An activity was organized at the Max-Planck-Institute for Mathematics in Bonn, with the purpose of bringing together the main experts in these areas. This volume originates from this activity and presents the state of the art in the subject.
This book is the proceedings of the conference OC Algebraic Geometry in East AsiaOCO which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry."
This book is the proceedings of the conference “Algebraic Geometry in East Asia” which was held in International Institute for Advanced Studies (IIAS) during August 3 to August 10, 2001.As the breadth of the topics covered in this proceedings demonstrate, the conference was indeed successful in assembling a wide spectrum of East Asian mathematicians, and gave them a welcome chance to discuss current state of algebraic geometry.
"This book is devoted to recent progress in the study of curves and abelian varieties. It discusses both classical aspects of this deep and beautiful subject as well as two important new developments, tropical geometry and the theory of log schemes." "In addition to original research articles, this book contains three surveys devoted to singularities of theta divisors. of compactified Jucobiuns of singular curves, and of "strange duality" among moduli spaces of vector bundles on algebraic varieties."--BOOK JACKET.
This comprehensive introduction to algebraic complexity theory presents new techniques for analyzing P vs NP and matrix multiplication.
Contains carefully written expository and research articles. Expository papers include discussions of Noether-Lefschetz theory, algebraicity of Hodge loci, and the representation theory of SL2(R). Research articles concern the Hodge conjecture, Harish-Chandra modules, mirror symmetry, Hodge representations of Q-algebraic groups, and compactifications, distributions, and quotients of period domains.
This book provides a comprehensive and up-to-date introduction to Hodge theory—one of the central and most vibrant areas of contemporary mathematics—from leading specialists on the subject. The topics range from the basic topology of algebraic varieties to the study of variations of mixed Hodge structure and the Hodge theory of maps. Of particular interest is the study of algebraic cycles, including the Hodge and Bloch-Beilinson Conjectures. Based on lectures delivered at the 2010 Summer School on Hodge Theory at the ICTP in Trieste, Italy, the book is intended for a broad group of students and researchers. The exposition is as accessible as possible and doesn't require a deep background...
In recent years, research in K3 surfaces and Calabi–Yau varieties has seen spectacular progress from both arithmetic and geometric points of view, which in turn continues to have a huge influence and impact in theoretical physics—in particular, in string theory. The workshop on Arithmetic and Geometry of K3 surfaces and Calabi–Yau threefolds, held at the Fields Institute (August 16-25, 2011), aimed to give a state-of-the-art survey of these new developments. This proceedings volume includes a representative sampling of the broad range of topics covered by the workshop. While the subjects range from arithmetic geometry through algebraic geometry and differential geometry to mathematical...