You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
description not available right now.
An examination of applications of electrochemical techniques to many organic and inorganic compounds that are either unstable or insoluble in water. It focuses on the continuing drive toward miniaturization in electronics met by designs for high-energy density batteries (based on nonaqueous systems). It addresses applications to nonaqueous batteries, supercapacitators, highly sensitive reagents, and electroorganic and electroinorganic synthesis.
The importance of microelectrodes is widely recognised and interest in their application in diverse areas of research has been increasing over the past ten years. In fact, several meetings organized by the International Society of Electrochemistry, The American Chemical Society and The U. S. Electrochemical Society have analysed various aspects of their theory and applications. For this reason it seemed that the time had arrived when scientists from around the world, actively concerned with research in the area of microelectrodes, should meet, exchange ideas and assess the direction of future developments. Furthermore, it seemed appropriate that this meeting should be held as a NATO Advanced...
Proceedings of the NATO Advanced Study Institute on Solid State Batteries, Alcabideche, Portugal, September 2-14, 1984
Here in a single source is an up-to-date description of the technology associated with the Li-Ion battery industry. It will be useful as a text for researchers interested in energy conversion for the direct conversion of chemical energy into electrical energy.
Nonaqueous Electrolytes Handbook, Volume I, is an authoritative and updated information source for nonaqueous solvent systems. The information in this handbook covers the literature to 1972 and includes data for some 210 solvents. The book has been organized into eight well-defined areas: Physical Properties o f Solvents, Solvent Purification, Electrical Conductance, Diffusion, Density, Viscosity, Transference Numbers, and Additional References and Data Sources. The latter section covers additional data sources and reviews not adequately described in the preceding sections; recent data and references are also found in this section. The method of presentation of material is briefly described ...
Next-Generation Batteries with Sulfur Cathodes provides a comprehensive review of a modern class of batteries with sulfur cathodes, particularly lithium-sulfur cathodes. The book covers recent trends, advantages and disadvantages in Li-S, Na-S, Al-S and Mg-S batteries and why these batteries are very promising for applications in hybrid and electric vehicles. Battery materials and modelling are also dealt with, as is their design, the physical phenomena existing in batteries, and a comparison of batteries between commonly used lithium-ion batteries and the new class of batteries with sulfur cathodes that are useful for devices like vehicles, wind power aggregates, computers and measurement units. - Provides solutions for the recycling of batteries with sulfur cathodes - Includes the effects of analysis and pro and cons of Li-S, Na-S, Al-S, Mg-S and Zn-S batteries - Describes state-of-the-art technological developments and possible applications
The Chemistry of Heterocyclic Compounds, since its inception, has been recognized as a cornerstone of heterocyclic chemistry. Each volume attempts to discuss all aspects – properties, synthesis, reactions, physiological and industrial significance – of a specific ring system. To keep the series up-to-date, supplementary volumes covering the recent literature on each individual ring system have been published. Many ring systems (such as pyridines and oxazoles) are treated in distinct books, each consisting of separate volumes or parts dealing with different individual topics. With all authors are recognized authorities, the Chemistry of Heterocyclic Chemistry is considered worldwide as the indispensable resource for organic, bioorganic, and medicinal chemists.
One area of science that has shown an explosive growth over the last few decades is materials science. Inherently by nature products of both basic and applied research, materials make possible life and society as we know it today. Materials, ranging from ceramics to semiconductors to composites, are such that new ones must not only be designed and made ... they must also be characterized in terms of their physical, chemical, and mechanical properties. Thus, many new state of-the-art techniques involving spectroscopy, microscopy, and other approaches are now routinely used. Modem materials have wide applications in many sectors of technology. Films, for example, constitute an enormous area of...