You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Solid and transparent data analysis is the most important basis for reliable interpretation of experiments. The technique of parallel spike train recordings using multi-electrode arrangements has been available for many decades now, but only recently gained wide popularity among electro physiologists. Many traditional analysis methods are based on firing rates obtained by trial-averaging, and some of the assumptions for such procedures to work can be ignored without serious consequences. The situation is different for correlation analysis, the result of which may be considerably distorted if certain critical assumptions are violated. The focus of this book is on concepts and methods of correlation analysis (synchrony, patterns, rate covariance), combined with a solid introduction into approaches for single spike trains, which represent the basis of correlations analysis. The book also emphasizes pitfalls and potential wrong interpretations of data due to violations of critical assumptions.
The four volume set LNCS 9947, LNCS 9948, LNCS 9949, and LNCS 9950 constitues the proceedings of the 23rd International Conference on Neural Information Processing, ICONIP 2016, held in Kyoto, Japan, in October 2016. The 296 full papers presented were carefully reviewed and selected from 431 submissions. The 4 volumes are organized in topical sections on deep and reinforcement learning; big data analysis; neural data analysis; robotics and control; bio-inspired/energy efficient information processing; whole brain architecture; neurodynamics; bioinformatics; biomedical engineering; data mining and cybersecurity workshop; machine learning; neuromorphic hardware; sensory perception; pattern recognition; social networks; brain-machine interface; computer vision; time series analysis; data-driven approach for extracting latent features; topological and graph based clustering methods; computational intelligence; data mining; deep neural networks; computational and cognitive neurosciences; theory and algorithms.
This book contains original articles submitted to the Seventh International Conference on Cognitive Neurodynamics (ICCN 2019). The brain is an endless case study of a complex system characterized by multiple levels of integration, multiple time scales of activity, and multiple coding and decoding properties. The contribution of several disciplines, mathematics, physics, computer science, neurobiology, pharmacology, physiology, and behavioral and clinical sciences, is necessary in order to cope with such seemingly unattainable complexity that transforms the experimental information into a tricky puzzle which hides the correspondence with model predictions. This conference gathered active participants to discuss ideas and pose new questions from different viewpoints, ranging from single neurons and neural networks to animal/human behavior in theoretical and experimental studies. The conference is organized with plenary lectures, mini-symposia, interdisciplinary round tables, and oral and poster sessions.
The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation and machine learning. This volume contains the papers presented at the December 2006 meeting, held in Vancouver.
The three volume set LNCS 7062, LNCS 7063, and LNCS 7064 constitutes the proceedings of the 18th International Conference on Neural Information Processing, ICONIP 2011, held in Shanghai, China, in November 2011. The 262 regular session papers presented were carefully reviewed and selected from numerous submissions. The papers of part I are organized in topical sections on perception, emotion and development, bioinformatics, biologically inspired vision and recognition, bio-medical data analysis, brain signal processing, brain-computer interfaces, brain-like systems, brain-realistic models for learning, memory and embodied cognition, Clifford algebraic neural networks, combining multiple lear...
This book shows how to develop efficient quantitative methods to characterize neural data and extra information that reveals underlying dynamics and neurophysiological mechanisms. Written by active experts in the field, it contains an exchange of innovative ideas among researchers at both computational and experimental ends, as well as those at the interface. Authors discuss research challenges and new directions in emerging areas with two goals in mind: to collect recent advances in statistics, signal processing, modeling, and control methods in neuroscience; and to welcome and foster innovative or cross-disciplinary ideas along this line of research and discuss important research issues in neural data analysis. Making use of both tutorial and review materials, this book is written for neural, electrical, and biomedical engineers; computational neuroscientists; statisticians; computer scientists; and clinical engineers.
This three-volume set LNCS 11139-11141 constitutes the refereed proceedings of the 27th International Conference on Artificial Neural Networks, ICANN 2018, held in Rhodes, Greece, in October 2018. The papers presented in these volumes was carefully reviewed and selected from total of 360 submissions. They are related to the following thematic topics: AI and Bioinformatics, Bayesian and Echo State Networks, Brain Inspired Computing, Chaotic Complex Models, Clustering, Mining, Exploratory Analysis, Coding Architectures, Complex Firing Patterns, Convolutional Neural Networks, Deep Learning (DL), DL in Real Time Systems, DL and Big Data Analytics, DL and Big Data, DL and Forensics, DL and Cybers...
This book is a part of the Proceedings of the Seventh International Symposium on Neural Networks (ISNN 2010), held on June 6-9, 2010 in Shanghai, China. Over the past few years, ISNN has matured into a well-established premier international symposium on neural networks and related fields, with a successful sequence of ISNN series in Dalian (2004), Chongqing (2005), Chengdu (2006), Nanjing (2007), Beijing (2008), and Wuhan (2009). Following the tradition of ISNN series, ISNN 2010 provided a high-level international forum for scientists, engineers, and educators to present the state-of-the-art research in neural networks and related fields, and also discuss the major opportunities and challeng...
description not available right now.
Can we discover morality in nature? Flowers and Honeybees extends the considerable scientific knowledge of flowers and honeybees through a philosophical discussion of the origins of morality in nature. Flowering plants and honeybees form a social group where each requires the other. They do not intentionally harm each other, both reason, and they do not compete for commonly required resources. They also could not be more different. Flowering plants are rooted in the ground and have no brains. Mobile honeybees can communicate the location of flower resources to other workers. We can learn from a million-year-old social relationship how morality can be constructed and maintained over time.