You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This volume, with chapters by leading researchers in the field, is devoted to early vision and attention, that is, to the first stages of visual information processing. This state-of-the-art look at biological neural networks spans the many subfields, such as computational and experimental neuroscience; anatomy and physiology; visual information processing and scene segmentation; perception at illusory contours; control of visual attention; and paradigms for computing with spiking neurons.
Hebb's postulate provided a crucial framework to understand synaptic alterations underlying learning and memory. Hebb's theory proposed that neurons that fire together, also wire together, which provided the logical framework for the strengthening of synapses. Weakening of synapses was however addressed by "not being strengthened", and it was only later that the active decrease of synaptic strength was introduced through the discovery of long-term depression caused by low frequency stimulation of the presynaptic neuron. In 1994, it was found that the precise relative timing of pre and postynaptic spikes determined not only the magnitude, but also the direction of synaptic alterations when tw...
The theory of neural nets has two new paradigms: information coding through coherent firing of the neurons and structural feedback. As compared to traditional neural nets, spiking neurons provide an extra degree of freedom: time; this degree of freedom is realized by a coherent spiking of extensively many neurons in the network, a nonlinear phenomenon. The other paradigm, feedback, is a dominant feature of the structural organization of the brain. This volume provides an in-depth analysis of both paradigms starting with an extensive introduction to the ideas used in the subsequent chapters. In addition, one finds a detailed discussion of salient features such as coherent oscillations and their detection, associative binding and segregation, Hebbian learning, and sensory computations in the visual and olfactory cortex. The style and level of this book make it particularly useful for advanced students and researchers looking for an accessible survey of today's theory of neuronal networks.
This volume constitutes the documentation of the advanced course on Analysis of Dynamical and Cognitive Systems, held during the Summer University of Southern Stockholm in Stockholm, Sweden in August 1993. The volume contains eight carefully revised full versions of the invited three-to-four hour presentations as well as two abstracts. As a consequence of the interdisciplinary topic, several aspects of dynamical and cognitive systems are addressed: there are three papers on computability and undecidability, five tutorials on diverse aspects of universal cellular neural networks, and two presentations on dynamical systems and complexity.
The story of a neural impulse and what it reveals about how our brains work We see the last cookie in the box and think, can I take that? We reach a hand out. In the 2.1 seconds that this impulse travels through our brain, billions of neurons communicate with one another, sending blips of voltage through our sensory and motor regions. Neuroscientists call these blips “spikes.” Spikes enable us to do everything: talk, eat, run, see, plan, and decide. In The Spike, Mark Humphries takes readers on the epic journey of a spike through a single, brief reaction. In vivid language, Humphries tells the story of what happens in our brain, what we know about spikes, and what we still have left to u...
How do sensory neurons transmit information about environmental stimuli to the central nervous system? How do networks of neurons in the CNS decode that information, thus leading to perception and consciousness? These questions are among the oldest in neuroscience. Quite recently, new approaches to exploration of these questions have arisen, often from interdisciplinary approaches combining traditional computational neuroscience with dynamical systems theory, including nonlinear dynamics and stochastic processes. In this volume in two sections a selection of contributions about these topics from a collection of well-known authors is presented. One section focuses on computational aspects from single neurons to networks with a major emphasis on the latter. The second section highlights some insights that have recently developed out of the nonlinear systems approach.
The annual conference on Neural Information Processing Systems (NIPS) is the flagship conference on neural computation. It draws preeminent academic researchers from around the world and is widely considered to be a showcase conference for new developments in network algorithms and architectures. The broad range of interdisciplinary research areas represented includes computer science, neuroscience, statistics, physics, cognitive science, and many branches of engineering, including signal processing and control theory. Only about 30 percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. These proceedings contain all of the papers that were presented.
This volume includes papers presented at the Fifth Annual Computational Neurosci ence meeting (CNS*96) held in Boston, Massachusetts, July 14 - 17, 1996. This collection includes 148 of the 234 papers presented at the meeting. Acceptance for mceting presenta tion was based on the peer review of preliminary papers originally submitted in May of 1996. The papers in this volume represent final versions of this work submitted in January of 1997. As represented by this volume, computational neuroscience continues to expand in quality, size and breadth of focus as increasing numbers of neuroscientists are taking a computational approach to understanding nervous system function. Defining computa tional neuroscience as the exploration of how brains compute, it is clear that there is al most no subject or area of modern neuroscience research that is not appropriate for computational studies. The CNS meetings as well as this volume reflect this scope and di versity.
The two volume set LNCS 4984 and LNCS 4985 constitutes the thoroughly refereed post-conference proceedings of the 14th International Conference on Neural Information Processing, ICONIP 2007, held in Kitakyushu, Japan, in November 2007, jointly with BRAINIT 2007, the 4th International Conference on Brain-Inspired Information Technology. The 228 revised full papers presented were carefully reviewed and selected from numerous ordinary paper submissions and 15 special organized sessions. The 116 papers of the first volume are organized in topical sections on computational neuroscience, learning and memory, neural network models, supervised/unsupervised/reinforcement learning, statistical learning algorithms, optimization algorithms, novel algorithms, as well as motor control and vision. The second volume contains 112 contributions related to statistical and pattern recognition algorithms, neuromorphic hardware and implementations, robotics, data mining and knowledge discovery, real world applications, cognitive and hybrid intelligent systems, bioinformatics, neuroinformatics, brain-conputer interfaces, and novel approaches.
About sixty years ago, the anomalous magnetic response of certain magnetic alloys drew the attention of theoretical physicists. It soon became clear that understanding these systems, now called spin glasses, would give rise to a new branch of statistical physics. As physical materials, spin glasses were found to be as useless as they were exotic. They have nevertheless been recognized as paradigmatic examples of complex systems with applications to problems as diverse as neural networks, amorphous solids, biological molecules, social and economic interactions, information theory and constraint satisfaction problems.This book presents an encyclopaedic overview of the broad range of these applications. More than 30 contributions are compiled, written by many of the leading researchers who have contributed to these developments over the last few decades. Some timely and cutting-edge applications are also discussed. This collection serves well as an introduction and summary of disordered and glassy systems for advanced undergraduates, graduate students and practitioners interested in the topic.