You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Modem materials science is exploiting novel tools of solid-state physics and chemistry to obtain an unprecedented understanding of the structure of matter at the atomic level. The direct outcome of this understanding is the ability to design and fabricate new materials whose properties are tailored to a given device ap plication. Although applications of materials science can range from low weight, high strength composites for the automobile and aviation industry to biocompat ible polymers, in no other field has progress been more strikingly rapid than in that of electronic materials. In this area, it is now possible to predict from first principles the properties of hypothetical materials a...
Many of the most important properties of materials in high-technology applications are strongly influenced or even controlled by the presence of solid interfaces. In this work, leading international authorities review the broad range of subjects in this field focusing on the atomic level properties of solid interfaces.
The Handbook of Semiconductor Manufacturing Technology describes the individual processes and manufacturing control, support, and infrastructure technologies of silicon-based integrated-circuit manufacturing, many of which are also applicable for building devices on other semiconductor substrates. Discussing ion implantation, rapid thermal processing, photomask fabrication, chip testing, and plasma etching, the editors explore current and anticipated equipment, devices, materials, and practices of silicon-based manufacturing. The book includes a foreword by Jack S. Kilby, cowinner of the Nobel Prize in Physics 2000 "for his part in the invention of the integrated circuit."
Integrated Silicon Optoelectronics synthesizes topics from optoelectronics and microelectronics. The book concentrates on silicon as the major base of modern semiconductor devices and circuits. Starting from the basics of optical emission and absorption, as well as from the device physics of photodetectors, the aspects of the integration of photodetectors in modern bipolar, CMOS, and BiCMOS technologies are discussed. Detailed descriptions of fabrication technologies and applications of optoelectronic integrated circuits are included. The book, furthermore, contains a review of the newest state of research on eagerly anticipated silicon light emitters. In order to cover the topics comprehensively, also included are integrated waveguides, gratings, and optoelectronic power devices. Numerous elaborate illustrations facilitate and enhance comprehension. This extended edition will be of value to engineers, physicists, and scientists in industry and at universities. The book is also recommended to graduate students specializing on microelectronics or optoelectronics.
Proceedings of the NATO Advanced Study Institute, San Miniato, Italy, September 2-13, 1985
This conference consisted of 15 oral sessions, including three plenary papers covering areas of general interest, 22 specialist invited papers and 51 contributed presentations as well as three poster sessions. There were several scientific highlights covering a diverse spectrum of materials and ion beam processing methods. These included a wide range of conventional and novel applications such as: optical displays and opto-electronics, motor vehicle and tooling parts, coatings tailored for desired properties, studies of fundamental defect properties, the production of novel (often buried) compounds, and treating biomedical materials. The study of nanocrystals produced by ion implantation in ...
Rapid thermal processing has contributed to the development of single wafer cluster processing tools and other innovations in integrated circuit manufacturing environments. Borisenko and Hesketh review theoretical and experimental progress in the field, discussing a wide range of materials, processes, and conditions. They thoroughly cover the work of international investigators in the field.
Silicon Integrated Circuits, Part 2 covers some of the most promising approaches along with the new understanding of processing-related areas of physics and chemistry. The first chapter is about the transient thermal processing of silicon, including annealing with directed-energy beams and rapid isothermal annealing; adiabatic annealing with laser and electron beams; pulsed melting; thermal flux annealing; rapid isothermal annealing; and several applications stemming from rapid annealing and semiconductor processing with directed-energy beams. The second chapter is concerned with the use of electron cyclotron resonance plasmas in two important materials processing techniques: reactive ion-beam etching and plasma deposition. The last chapter of the book deals with the exploding area of very large scale integration processing and process simulation. Physicists, chemists, and engineers involved in silicon integrated circuits will find the book invaluable.
description not available right now.
Covering materials, processes, equipment, methodologies, characterization techniques, clean room practices, and ways to control contamination-related defects, this work offers up-to-date information on the application of interconnection technology to semiconductors. It offers an integration of technical, patent and industry literature.