You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book will be especially useful for post-graduate students and researchers interested in the fixed point theory, particularly in topological methods in nonlinear analysis, differential equations and dynamical systems. The content is also likely to stimulate the interest of mathematical economists, population dynamics experts as well as theoretical physicists exploring the topological dynamics.
In the design of a neural network, either for biological modeling, cognitive simulation, numerical computation or engineering applications, it is important to investigate the network's computational performance which is usually described by the long-term behaviors, called dynamics, of the model equations. The purpose of this book is to give an introduction to the mathematical modeling and analysis of networks of neurons from the viewpoint of dynamical systems.
This book presents a study of neuroscience models and natural phenomena, such as tsunami waves and tornados. The first part discusses various mathematical models of tsunamis, including the Korteweg–de Vries equation, shallow water equations and the Camassa–Holm equation (CH). In order to study the dynamics of these models, the text uses the Cellular Nonlinear Networks (CNN) approach to discretize the governing equation using a suitable mathematical grid. The second part discusses some of the models arising in the field of neuroscience. It examines the Fitzhugh-Nagumo systems, which are very important for understanding the qualitative nature of nerve impulse propagation. The volume will be of interest to a wide-ranging audience, including PhD students, mathematicians, physicists, engineers and specialists in the domain of nonlinear waves and their applications.
This handbook is volume II in a series collecting mathematical state-of-the-art surveys in the field of dynamical systems. Much of this field has developed from interactions with other areas of science, and this volume shows how concepts of dynamical systems further the understanding of mathematical issues that arise in applications. Although modeling issues are addressed, the central theme is the mathematically rigorous investigation of the resulting differential equations and their dynamic behavior. However, the authors and editors have made an effort to ensure readability on a non-technical level for mathematicians from other fields and for other scientists and engineers. The eighteen sur...
This book contains eighteen papers, all more-or-less linked to the theory of dynamical systems together with related studies of chaos and fractals. It shows many fractal configurations that were generated by computer calculations of underlying two-dimensional maps.
This handbook is the fourth volume in a series of volumes devoted to self-contained and up-to-date surveys in the theory of ordinary differential equations, with an additional effort to achieve readability for mathematicians and scientists from other related fields so that the chapters have been made accessible to a wider audience. - Covers a variety of problems in ordinary differential equations - Pure mathematical and real-world applications - Written for mathematicians and scientists of many related fields