You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
A wide-ranging history of the algorithm. Bringing together the histories of mathematics, computer science, and linguistic thought, Language and the Rise of the Algorithm reveals how recent developments in artificial intelligence are reopening an issue that troubled mathematicians well before the computer age: How do you draw the line between computational rules and the complexities of making systems comprehensible to people? By attending to this question, we come to see that the modern idea of the algorithm is implicated in a long history of attempts to maintain a disciplinary boundary separating technical knowledge from the languages people speak day to day. Here Jeffrey M. Binder offers a ...
The technologies applied in design studies vary from basic theories to more application-based systems. Intelligence engineering also plays a significant role in design sciences such as computer-aided industrial design, human factor design, and greenhouse design, and intelligent engineering technologies such as computational technologies, sensing technologies, and video detection encompass both theory and application perspectives. Being multidisciplinary in nature, intelligence engineering promotes cooperation, exchange and discussion between organizations and researchers from diverse fields. This book presents the proceedings of DSIE 2022, the International Symposium on Design Studies and In...
This book provides an overview of the recent advances in representation learning theory, algorithms, and applications for natural language processing (NLP), ranging from word embeddings to pre-trained language models. It is divided into four parts. Part I presents the representation learning techniques for multiple language entries, including words, sentences and documents, as well as pre-training techniques. Part II then introduces the related representation techniques to NLP, including graphs, cross-modal entries, and robustness. Part III then introduces the representation techniques for the knowledge that are closely related to NLP, including entity-based world knowledge, sememe-based lin...
Provides a holistic overview of the foundational ideas in music, from the physical and mathematical properties of sound to symbolic representations Combines signlas and language models in one place to explore how sound may be represented and manipulated by computer systems More complex discussions are gradually incorporated and each chapter includes guided programming activities to familiarise readers with the discussed theory
Deep learning has achieved impressive results in image classification, computer vision, and natural language processing. To achieve better performance, deeper and wider networks have been designed, which increase the demand for computational resources. The number of floatingpoint operations (FLOPs) has increased dramatically with larger networks, and this has become an obstacle for convolutional neural networks (CNNs) being developed for mobile and embedded devices. In this context, Binary Neural Networks: Algorithms, Architectures, and Applications will focus on CNN compression and acceleration, which are important for the research community. We will describe numerous methods, including par...
The book comprehensively covers a wide range of evolutionary computer vision methods and applications, feature selection and extraction for training and classification, and metaheuristic algorithms in image processing. It further discusses optimized image segmentation, its analysis, pattern recognition, and object detection. Features: Discusses machine learning-based analytics such as GAN networks, autoencoders, computational imaging, and quantum computing Covers deep learning algorithms in computer vision Showcases novel solutions such as multi-resolution analysis in imaging processing, and metaheuristic algorithms for tackling challenges associated with image processing Highlight optimizat...
This book is a guide to navigating the ever-changing landscape of artificial intelligence. It is designed for both novices and seasoned professionals, covering a wide range of topics from fundamental concepts to cutting-edge advancements. Readers will investigate the principles of machine learning, explore the intricacies of deep learning architectures, and discover the applications of natural language processing and computer vision. Through concise explanations and practical examples, readers will gain the knowledge and skills necessary to confidently navigate the dynamic field of artificial intelligence. Additionally, the text examines real-world case studies and addresses important ethica...