You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book provides a general overview and current state of the art of different types of metal oxide nanomaterials, either in nanoparticles or thin film structure. It covers from the development and optimization of different nanofabrication/synthesis techniques for nanostructures which are currently the attention of the research community, the study of the structure and interactions by different characterization techniques of heterostructured materials and the final impact in different applications such as nanotherapy, data storage, super magnets, high-frequency devices. The book’s 13 chapters provide deep insight into the intriguing science of oxide materials and include contributions on novel technologies to fabricate nanomaterials with a broad range of functional properties (semiconducting, magnetic, ferroelectric, thermoelectric, optical, flexible and mechanical). This book is intended to the experts for consolidation of their knowledge but also for students who aim to learn and get basics of nanostructured metal oxides in diverse forms.
Magnetic spinels including ferrites are insulating magnetic oxides and chalcogenides with strong coupling to microwave frequencies and low eddy current losses making them indispensable for applications in wireless communications. The 13 chapters and preface of this book discuss other potential applications of magnetic spinels along with various methods used for their synthesis and their varied properties resulting from substituting different metal ions at the A and B sites. These applications include ferrofluids, anticorrosion coatings, absorber coatings for photothermal conversion, biomedicine, and environmental applications such as oxidation of volatile organic compounds and removal of arsenic and heavy metals from water. Emphasis is placed on structure-property correlations and on the nature of magnetism in spinels and their nanoparticles with current information provided for future research.
Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the pro...
This first focused treatment on a hot topic highlights fundamental aspects as well as technological applications arising from a fascinating area of condensed matter physics. The editors have excellent track records and, in light of the broadness of the topic, retain the focus on antiferromagnetic oxides. They thus cover such topics as dichroism in x-ray absorption, non-magnetic substrates, exchange bias, ferromagnetic-antiferromagnetic interface coupling and oxide multilayers, as well as imaging using soft x-ray microscopy. The result is a very timely monograph for solid state physicists and chemists, materials scientists, electrical engineers, physicists in industry, physical laboratory technicians, and suppliers of sensors.
The main aims of this book are to summarize the fundamentals, synthesis methods, properties and applications of nanomaterials, so as to provide readers with a systematic knowledge on nanomaterials. In addition, the book covers most commonly used characterization tools pertaining to nanomaterials. Further, it deals with relevant aspects of nanocomposites which contains dispersion of nano-sized particulates, and carbon nanotubes (CNTs) in the matrices (polymer, metal and ceramic). It also discusses development of smart nano textiles (intelligent textiles), self-cleaning glass, sensors, actuators, ferro-fluids, and wear resistant nano coatings. Aimed at senior undergraduate and graduate students, the key features on this book include: Top-down and bottom-up approaches for the synthesis of nanomaterials included Illustrates sample preparation and basic principle of characterization tools for nanomaterials Explains calculation of ratios of surface area to volume and surface atoms to bulk atoms Reviews synthesis, properties and applications of carbon nanotubes and magnetic nanomaterials Discusses size effect on thermal, mechanical, optical, magnetic and electrical properties
One of the most spectacular consequences of the description of the superfluid condensate in superfluid He or in superconductors as a single macroscopic quantum state is the quantization of circulation, resulting in quantized vortex lines. This book draws no distinction between superfluid He3 and He4 and superconductors. The reader will find the essential introductory chapters and the most recent theoretical and experimental progress in our understanding of the vortex state in both superconductors and superfluids, from lectures given by leading experts in the field, both experimentalists and theoreticians, who gathered in Cargèse for a NATO ASI. The peculiar features related to short coherence lengths, 2D geometry, high temperatures, disorder, and pinning are thoroughly discussed.
"Nanomaterials" is a special topic of recent research and is a milestone of nanoscience and nanotechnology. Nanoscale materials are a series of substances/compounds, in which at least one dimension has smaller size than 100 nm. Nanomaterials have a broad area of development, which is growing rapidly day by day. Their impact on commercial applications as well as on the respective academia and education is huge. The basic points of this book can be divided into synthesis of nanomaterials and their applications. For example, special mention is about metal-oxide nanostructures, nanocomposites, and polymeric nanomaterials. Also, synthesis, characterizations, various processes, fabrications and some promising applications are also developed and analyzed.
Magnetic and spintronic materials are ubiquitous in modern technological applications, e.g. in electric motors, power generators, sensors and actuators, not to mention information storage and processing. Medical technology has also greatly benefited from magnetic materials – especially magnetic nanoparticles – for therapy and diagnostics methods. All of the above-mentioned applications rely on the properties of the materials used. These properties in turn depend on intrinsic and extrinsic material parameters. The former are related to the actual elements used and their properties, e.g. atomic magnetic moment and exchange interaction between atoms; the latter are related to the structural and microstructural properties of the materials used, e.g. their crystal structure, grain size, and grain boundary phases. Focusing on state-of-the-art magnetic and spintronic materials, this book will introduce readers to a range of related topics in Physics and Materials Science. Phenomena and processes at the nanoscale are of particular importance in this context; accordingly, much of the book addresses such topics.
Nanofillers for Sustainable Applications provides an in-depth review of the wide-ranging applications of nanofillers. It explores both synthetic and natural nanofillers and focuses on their use as reinforcement and active fillers in composite structures. Covering various aspects of nanofillers, including synthesis methods, characteristics, properties, and compatibility, this book highlights the potential of nanofillers as functional materials for different applications and offers a collection of comparative studies to showcase their efficacy. It emphasizes sustainability, intelligent design, and high-end applications in fields such as packaging, pulp and paper, aerospace, automotive, medicin...
In 1988 the Mossbauer effect community completed 30 years of continual contribution to the fields of nuclear physics, solid state science, and a variety of related disciplines. To celebrate this anniversary, Professor Gonser of the Universitat des Saarlandes has contributed a chapter to this volume on the history of the effect. Although Mossbauer spectroscopy has reached its mature years, the chapters in this volume illustrate that it is still a dynamic field of science with applications to topics ranging from permanent magnets to biologi cal mineralization. During the discussion of a possible chapter for this volume, a potential author asked, "Do we really need another Mossbauer book?" The ...