Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

On $p$-Adic $L$-Functions for Hilbert Modular Forms
  • Language: en
  • Pages: 138

On $p$-Adic $L$-Functions for Hilbert Modular Forms

View the abstract.

Index of Patents Issued from the United States Patent and Trademark Office
  • Language: en
  • Pages: 388

Index of Patents Issued from the United States Patent and Trademark Office

  • Type: Book
  • -
  • Published: 1993
  • -
  • Publisher: Unknown

description not available right now.

The Mother Body Phase Transition in the Normal Matrix Model
  • Language: en
  • Pages: 156

The Mother Body Phase Transition in the Normal Matrix Model

In this present paper, the authors consider the normal matrix model with cubic plus linear potential.

Tits Polygons
  • Language: en
  • Pages: 114

Tits Polygons

View the abstract.

Subset currents on surfaces
  • Language: en
  • Pages: 178

Subset currents on surfaces

View the abstract.

Goodwillie Approximations to Higher Categories
  • Language: en
  • Pages: 108

Goodwillie Approximations to Higher Categories

View the abstract.

Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces
  • Language: en
  • Pages: 90

Quiver Grassmannians of Extended Dynkin Type D Part I: Schubert Systems and Decompositions into Affine Spaces

Let Q be a quiver of extended Dynkin type D˜n. In this first of two papers, the authors show that the quiver Grassmannian Gre–(M) has a decomposition into affine spaces for every dimension vector e– and every indecomposable representation M of defect −1 and defect 0, with the exception of the non-Schurian representations in homogeneous tubes. The authors characterize the affine spaces in terms of the combinatorics of a fixed coefficient quiver for M. The method of proof is to exhibit explicit equations for the Schubert cells of Gre–(M) and to solve this system of equations successively in linear terms. This leads to an intricate combinatorial problem, for whose solution the authors develop the theory of Schubert systems. In Part 2 of this pair of papers, they extend the result of this paper to all indecomposable representations M of Q and determine explicit formulae for the F-polynomial of M.

Dimensions of Affine Deligne–Lusztig Varieties: A New Approach Via Labeled Folded Alcove Walks and Root Operators
  • Language: en
  • Pages: 114

Dimensions of Affine Deligne–Lusztig Varieties: A New Approach Via Labeled Folded Alcove Walks and Root Operators

Let G be a reductive group over the field F=k((t)), where k is an algebraic closure of a finite field, and let W be the (extended) affine Weyl group of G. The associated affine Deligne–Lusztig varieties Xx(b), which are indexed by elements b∈G(F) and x∈W, were introduced by Rapoport. Basic questions about the varieties Xx(b) which have remained largely open include when they are nonempty, and if nonempty, their dimension. The authors use techniques inspired by geometric group theory and combinatorial representation theory to address these questions in the case that b is a pure translation, and so prove much of a sharpened version of a conjecture of Görtz, Haines, Kottwitz, and Reuman....

Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi
  • Language: en
  • Pages: 132

Higher Orbifolds and Deligne-Mumford Stacks as Structured Infinity-Topoi

The author develops a universal framework to study smooth higher orbifolds on the one hand and higher Deligne-Mumford stacks (as well as their derived and spectral variants) on the other, and use this framework to obtain a completely categorical description of which stacks arise as the functor of points of such objects. He chooses to model higher orbifolds and Deligne-Mumford stacks as infinity-topoi equipped with a structure sheaf, thus naturally generalizing the work of Lurie, but his approach applies not only to different settings of algebraic geometry such as classical algebraic geometry, derived algebraic geometry, and the algebraic geometry of commutative ring spectra but also to diffe...

Laminational Models for Some Spaces of Polynomials of Any Degree
  • Language: en
  • Pages: 118

Laminational Models for Some Spaces of Polynomials of Any Degree

The so-called 'pinched disk' model of the Mandelbrot set is due to A. Douady, J. H. Hubbard, and W. P. Thurston. It can be described in the language of geodesic laminations.