You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This text book gives a comprehensive account of magnetism, one of the oldest yet most vibrant fields of physics. It spans the historical development, the physical foundations and the continuing research underlying the subject. The book covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. The book is for students, and serves as a reference for scientists in academia and research laboratories.
This is the first ever comprehensive treatment of NEXAFS spectroscopy. It is suitable for novice researchers as an introduction to the field, while experts will welcome the detailed description of state-of-the-art instrumentation and analysis techniques, along with the latest experimental and theoretical results.
description not available right now.
Eagerly awaited, this second edition of a best-selling text comprehensively describes from a modern perspective the basics of x-ray physics as well as the completely new opportunities offered by synchrotron radiation. Written by internationally acclaimed authors, the style of the book is to develop the basic physical principles without obscuring them with excessive mathematics. The second edition differs substantially from the first edition, with over 30% new material, including: A new chapter on non-crystalline diffraction - designed to appeal to the large community who study the structure of liquids, glasses, and most importantly polymers and bio-molecules A new chapter on x-ray imaging - ...
This completely revised successor to the Handbook of Microscopy supplies in-depth coverage of all imaging technologies from the optical to the electron and scanning techniques. Adopting a twofold approach, the book firstly presents the various technologies as such, before going on to cover the materials class by class, analyzing how the different imaging methods can be successfully applied. It covers the latest developments in techniques, such as in-situ TEM, 3D imaging in TEM and SEM, as well as a broad range of material types, including metals, alloys, ceramics, polymers, semiconductors, minerals, quasicrystals, amorphous solids, among others. The volumes are divided between methods and applications, making this both a reliable reference and handbook for chemists, physicists, biologists, materials scientists and engineers, as well as graduate students and their lecturers.
The ability to interpret and inverse x-ray diffraction patterns from crystals has largely shaped our understanding of the structure of matter. However, structure determination of noncrystalline objects from their diffraction patterns is a much more difficult task. The dramatic increase in available coherent x-ray photon flux over the past decade has made possible a technique known as lensless coherent diffractive imaging (CDI), that addresses exactly this problem. The central question around CDI is the so-called phase problem: upon detection of the diffraction intensity, the phase information of the diffracted wave is inevitably lost. Generally, the phase problem is approached using iterativ...
Spintronics Handbook, Second Edition offers an update on the single most comprehensive survey of the two intertwined fields of spintronics and magnetism, covering the diverse array of materials and structures, including silicon, organic semiconductors, carbon nanotubes, graphene, and engineered nanostructures. It focuses on seminal pioneering work, together with the latest in cutting-edge advances, notably extended discussion of two-dimensional materials beyond graphene, topological insulators, skyrmions, and molecular spintronics. The main sections cover physical phenomena, spin-dependent tunneling, control of spin and magnetism in semiconductors, and spin-based applications.
Heterostructures consist of combinations of different materials, which are in contact through at least one interface. Magnetic heterostructures combine different physical properties which do not exist in nature. This book provides the first comprehensive overview of an exciting and fast developing field of research, which has already resulted in numerous applications and is the basis for future spintronic devices.