You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This monograph is devoted to the study of the weighted Bergman space $A^p_\omega$ of the unit disc $\mathbb{D}$ that is induced by a radial continuous weight $\omega$ satisfying $\lim_{r\to 1^-}\frac{\int_r^1\omega(s)\,ds}{\omega(r)(1-r)}=\infty.$ Every such $A^p_\omega$ lies between the Hardy space $H^p$ and every classical weighted Bergman space $A^p_\alpha$. Even if it is well known that $H^p$ is the limit of $A^p_\alpha$, as $\alpha\to-1$, in many respects, it is shown that $A^p_\omega$ lies ``closer'' to $H^p$ than any $A^p_\alpha$, and that several finer function-theoretic properties of $A^p_\alpha$ do not carry over to $A^p_\omega$.
The authors investigate the global continuity on spaces with of Fourier integral operators with smooth and rough amplitudes and/or phase functions subject to certain necessary non-degeneracy conditions. In this context they prove the optimal global boundedness result for Fourier integral operators with non-degenerate phase functions and the most general smooth Hörmander class amplitudes i.e. those in with . They also prove the very first results concerning the continuity of smooth and rough Fourier integral operators on weighted spaces, with and (i.e. the Muckenhoupt weights) for operators with rough and smooth amplitudes and phase functions satisfying a suitable rank condition.
In general, little is known about the representation theory of quantum groups (resp., algebraic groups) when l (resp., p ) is smaller than the Coxeter number h of the underlying root system. For example, Lusztig's conjecture concerning the characters of the rational irreducible G -modules stipulates that p=h. The main result in this paper provides a surprisingly uniform answer for the cohomology algebra H (u ? ,C) of the small quantum group.
The author develops a homology theory for Smale spaces, which include the basics sets for an Axiom A diffeomorphism. It is based on two ingredients. The first is an improved version of Bowen's result that every such system is the image of a shift of finite type under a finite-to-one factor map. The second is Krieger's dimension group invariant for shifts of finite type. He proves a Lefschetz formula which relates the number of periodic points of the system for a given period to trace data from the action of the dynamics on the homology groups. The existence of such a theory was proposed by Bowen in the 1970s.
Descriptive set theory is mainly concerned with studying subsets of the space of all countable binary sequences. In this paper the authors study the generalization where countable is replaced by uncountable. They explore properties of generalized Baire and Cantor spaces, equivalence relations and their Borel reducibility. The study shows that the descriptive set theory looks very different in this generalized setting compared to the classical, countable case. They also draw the connection between the stability theoretic complexity of first-order theories and the descriptive set theoretic complexity of their isomorphism relations. The authors' results suggest that Borel reducibility on uncountable structures is a model theoretically natural way to compare the complexity of isomorphism relations.
Hua's fundamental theorem of geometry of matrices describes the general form of bijective maps on the space of all m\times n matrices over a division ring \mathbb{D} which preserve adjacency in both directions. Motivated by several applications the author studies a long standing open problem of possible improvements. There are three natural questions. Can we replace the assumption of preserving adjacency in both directions by the weaker assumption of preserving adjacency in one direction only and still get the same conclusion? Can we relax the bijectivity assumption? Can we obtain an analogous result for maps acting between the spaces of rectangular matrices of different sizes? A division ring is said to be EAS if it is not isomorphic to any proper subring. For matrices over EAS division rings the author solves all three problems simultaneously, thus obtaining the optimal version of Hua's theorem. In the case of general division rings he gets such an optimal result only for square matrices and gives examples showing that it cannot be extended to the non-square case.
A partial solution of the quaternionic contact Yamabe problem on the quaternionic sphere is given. It is shown that the torsion of the Biquard connection vanishes exactly when the trace-free part of the horizontal Ricci tensor of the Biquard connection is zero and this occurs precisely on 3-Sasakian manifolds. All conformal transformations sending the standard flat torsion-free quaternionic contact structure on the quaternionic Heisenberg group to a quaternionic contact structure with vanishing torsion of the Biquard connection are explicitly described. A "3-Hamiltonian form" of infinitesimal conformal automorphisms of quaternionic contact structures is presented.
The structure space of a closed topological -manifold classifies bundles whose fibers are closed -manifolds equipped with a homotopy equivalence to . The authors construct a highly connected map from to a concoction of algebraic -theory and algebraic -theory spaces associated with . The construction refines the well-known surgery theoretic analysis of the block structure space of in terms of -theory.
The authors consider the time-dependent Schrödinger equation on a Riemannian manifold with a potential that localizes a certain subspace of states close to a fixed submanifold . When the authors scale the potential in the directions normal to by a parameter , the solutions concentrate in an -neighborhood of . This situation occurs for example in quantum wave guides and for the motion of nuclei in electronic potential surfaces in quantum molecular dynamics. The authors derive an effective Schrödinger equation on the submanifold and show that its solutions, suitably lifted to , approximate the solutions of the original equation on up to errors of order at time . Furthermore, the authors prove that the eigenvalues of the corresponding effective Hamiltonian below a certain energy coincide up to errors of order with those of the full Hamiltonian under reasonable conditions.