You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book presents a synthetic analysis about the characteristics of time expressions and named entities, and some proposed methods for leveraging these characteristics to recognize time expressions and named entities from unstructured text. For modeling these two kinds of entities, the authors propose a rule-based method that introduces an abstracted layer between the specific words and the rules, and two learning-based methods that define a new type of tagging scheme based on the constituents of the entities, different from conventional position-based tagging schemes that cause the problem of inconsistent tag assignment. The authors also find that the length-frequency of entities follows a family of power-law distributions. This finding opens a door, complementary to the rank-frequency of words, to understand our communicative system in terms of language use.
This book is part I of a two-volume work that contains the refereed proceedings of the International Conference on Life System Modeling and Simulation, LSMS 2010 and the International Conference on Intelligent Computing for Sustainable Energy and Environment, ICSEE 2010, held in Wuxi, China, in September 2010. The 194 revised full papers presented were carefully reviewed and selected from over 880 submissions and recommended for publication by Springer in two volumes of Lecture Notes in Computer Science (LNCS) and one volume of Lecture Notes in Bioinformatics (LNBI). This particular volume of Lecture Notes in Computer Science (LNCS) includes 55 papers covering 7 relevant topics. The 55 paper...
The 2010 International Conference on Life System Modeling and Simulation (LSMS 2010) and the 2010 International Conference on Intelligent Computing for Sustainable Energy and Environment (ICSEE 2010) were formed to bring together researchers and practitioners in the fields of life system modeling/simulation and intelligent computing applied to worldwide sustainable energy and environmental applications. A life system is a broad concept, covering both micro and macro components ra- ing from cells, tissues and organs across to organisms and ecological niches. To c- prehend and predict the complex behavior of even a simple life system can be - tremely difficult using conventional approaches. To...
This book focuses on big data in business intelligence, data management, machine learning, cloud computing, and smart cities. It also provides an interdisciplinary platform to present and discuss recent innovations, trends, and concerns in the fields of big data and analytics. Big Data Analysis for Green Computing: Concepts and Applications presents the latest technologies and covers the major challenges, issues, and advances of big data and data analytics in green computing. It explores basic as well as high-level concepts. It also includes the use of machine learning using big data and discusses advanced system implementation for smart cities. The book is intended for business and management educators, management researchers, doctoral scholars, university professors, policymakers, and higher academic research organizations.
This book gathers a collection of selected works and new research results of scholars and graduate students presented at the 6th International Conference on Artificial Intelligence and Virtual Reality (AIVR 2022) via the Internet, during July 22-24 2022, hosted and organized by Sojo University in conjunction with other three universities and Beijing Huaxia Rongzhi Blockchain Technology Institute. The focus of the book is interdisciplinary in nature and includes research on all aspects of artificial intelligence and virtual reality, from fundamental development to the applied system. The book covers topics such as system techniques, performance, and implementation; content creation and modelling; cognitive aspects, perception, user behaviour; AI technologies; interactions, interactive and responsive environments; AI/VR applications and case studies.
This book constitutes the first of 3 volumes of refereed conference proceedings of the 8th International Conference on Intelligent Computing, ICIC 2012, held in Huangshan, China, in July 2012. The 242 revised full papers presented were carefully reviewed and selected from 753 submissions. The 84 papers included in this volume are organized in topical sections on evolutionary learning and genetic algorithms, fuzzy theory and models, swarm intelligence and optimization, kernel methods and supporting vector machines, nature inspired computing and optimization, systems biology and computational biology, knowledge discovery and data mining, graph theory and algorithms, machine learning theory and...
This book constitutes the refereed proceedings of the International Workshop on Pattern Recognition in Bioinformatics, PRIB 2007, held in Singapore in October 2007. The 38 revised full papers presented were carefully reviewed and selected from 125 submissions. The papers discuss the applications of pattern recognition methods in the field of bioinformatics to solve problems in life sciences.
This volume in the Lecture Notes in Computer Science series contains accepted papers presented at IDEAL 2005, held in Brisbane, Australia, during July 6–8, 2005.
The book aims to highlight the potential of deep learning (DL)-enabled methods in intelligent fault diagnosis (IFD), along with their benefits and contributions. The authors first introduce basic applications of DL-enabled IFD, including auto-encoders, deep belief networks, and convolutional neural networks. Advanced topics of DL-enabled IFD are also explored, such as data augmentation, multi-sensor fusion, unsupervised deep transfer learning, neural architecture search, self-supervised learning, and reinforcement learning. Aiming to revolutionize the nature of IFD, Deep Neural Networks-Enabled Intelligent Fault Diangosis of Mechanical Systems contributes to improved efficiency, safety, and reliability of mechanical systems in various industrial domains. The book will appeal to academic researchers, practitioners, and students in the fields of intelligent fault diagnosis, prognostics and health management, and deep learning.
This book constitutes refereed proceedings of the Second International Workshop on Deep Learning for Human Activity Recognition, DL-HAR 2020, held in conjunction with IJCAI-PRICAI 2020, in Kyoto, Japan, in January 2021. Due to the COVID-19 pandemic the workshop was postponed to the year 2021 and held in a virtual format. The 10 presented papers were thorougly reviewed and included in the volume. They present recent research on applications of human activity recognition for various areas such as healthcare services, smart home applications, and more.