You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
It is well known that stellar winds are variable, and the fluctuations are often cyclical in nature. This property seems to be shared by the winds of cool and hot stars, even though their outflows are driven by fundamentally different physical mechanisms. Since very similar models have been proposed to explain the cyclical wind variations observed in a wide variety of stars, the time was ripe for astrophysicists from many different sub-disciplines to present the state of the art in a concise form. The proceedings will provide a useful, up-to-date overview of the observations, interpretation, and modelling of the time-dependent mass outflows from all sorts of stars.
The first comprehensive introduction to the observations and theories of stellar winds; a long-awaited graduate textbook, written by two founders of the field.
The observational evidence for the existence of black holes has grown significantly over recent decades. Stellar-mass black holes are detected as X-ray sources in binary systems, while supermassive black holes, with masses more than a million times the mass of the Sun, lurk in the nuclei of galaxies. These proceedings provide a useful and up-to-date overview of the observations of black holes in binaries, in the center of the Milky Way, and in the nuclei of galaxies, presented by leading expert astronomers. Special attention is given to the formation (including the recent evidence from gamma-ray bursts), physical properties, and demographics of black holes.
In published papers H A Bethe and G E Brown worked out the collapse of large stars and supernova explosions. They went on to evolve binaries of compact stars, finding that in the standard scenario the first formed neutron star always went into a black hole in common envelope evolution. C-H Lee joined them in the study of black hole binaries and gamma ray bursts. They found the black holes to be the fossils of the gamma ray bursts. From their properties they could reconstruct features of the burst and of the accompanying hypernova explosions. This invaluable book contains 23 papers on astrophysics, chiefly on compact objects, written over 23 years. The papers are accompanied by illuminating commentary. In addition there is an appendix on kaon condensation which the editors believe to be relevant to the equation of state in neutron stars, and to explain why black holes are formed at relatively low masses.
Nature is characterized by a number of physical laws and fundamental dimensionless couplings. These determine the properties of our physical universe, from the size of atoms, cells and mountains to the ultimate fate of the universe as a whole. Yet it is rather remarkable how little we know about them. The constancy of physical laws is one of the cornerstones of the scientific research method, but for fundamental couplings this is an assumption with no other justification than a historical assumption. There is no 'theory of constants' describing their role in the underlying theories and how they relate to one another or how many of them are truly fundamental. Studying the behaviour of these quantities throughout the history of the universe is an effective way to probe fundamental physics. This explains why the ESA and ESO include varying fundamental constants among their key science drivers for the next generation of facilities. This symposium discussed the state-of-the-art in the field, as well as the key developments anticipated for the coming years.
This specialized workshop was conceived during the workshop on "Non isotropic and Variable Outflows from Stars", which was held at the Space Telescope Science Institute in October, 1991. At that meeting, the four of us collectively decided that the time was ripe for an even more focussed discussion of the basic issues in the area of hot-star wind instability and its observable manifestations. Not that the big problems have been solved! Rather, we are currently in a phase of rapid development, both with regard to the models and to the observations. The key issue at this new workshop would be to decide how the time-dependent structures observed in hot-star winds (e. g. , NACs, DACs, blobs, clu...
This volume presents results from the ESO workshop Multiple Stars across the H-R Diagram, held in Garching in July 2005. It covers observations of multiple stars from ground and space, dynamical and stellar evolution in multiple systems, formation and early evolution of multiple stars, and special components of multiple stars. The book reviews the current state of observational and theoretical knowledge and discusses future studies for further progress in the field.
A graduate-level textbook on the astrophysics of binary star systems and their evolution Physics of Binary Star Evolution is an up-to-date textbook on the astrophysics and evolution of binary star systems. Theoretical astrophysicists Thomas Tauris and Edward van den Heuvel cover a wide range of phenomena and processes, including mass transfer and ejection, common envelopes, novae and supernovae, X-ray binaries, millisecond radio pulsars, and gravitational wave (GW) sources, and their links to stellar evolution. The authors walk through the observed properties and evolution of different types of binaries, with special emphasis on those containing compact objects (neutron stars, black holes, a...
An up-to-date survey of astrochemistry in the early years of the twenty-first century. For researchers and graduate students.