You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Linear algebra permeates mathematics, as well as physics and engineering. In this text for junior and senior undergraduates, Sadun treats diagonalization as a central tool in solving complicated problems in these subjects by reducing coupled linear evolution problems to a sequence of simpler decoupled problems. This is the Decoupling Principle. Traditionally, difference equations, Markov chains, coupled oscillators, Fourier series, the wave equation, the Schrodinger equation, and Fourier transforms are treated separately, often in different courses. Here, they are treated as particular instances of the decoupling principle, and their solutions are remarkably similar. By understanding this ge...
"This book is an introduction to the topology of tiling spaces, with a target audience of graduate students who wish to learn about the interface of topology with aperiodic order. It isn't a comprehensive and cross-referenced tome about everything having to do with tilings, which would be too big, too hard to read, and far too hard to write! Rather, it is a review of the explosion of recent work on tiling spaces as inverse limits, on the cohomology of tiling spaces, on substitution tilings and the role of rotations, and on tilings that do not have finite local complexity. Powerful computational techniques have been developed, as have new ways of thinking about tiling spaces." "The text contains a generous supply of examples and exercises."--BOOK JACKET.
Quantum algorithms are among the most important, interesting, and promising innovations in information and communication technology. They pose a major threat to today's cybersecurity and at the same time promise great benefits by potentially solving previously intractable computational problems with reasonable effort. The theory of quantum algorithms is based on advanced concepts from computer science, mathematics, and physics. Introduction to Quantum Algorithms offers a mathematically precise exploration of these concepts, accessible to those with a basic mathematical university education, while also catering to more experienced readers. This comprehensive book is suitable for self-study or as a textbook for one- or two-semester introductory courses on quantum computing algorithms. Instructors can tailor their approach to emphasize theoretical understanding and proofs or practical applications of quantum algorithms, depending on the course's goals and timeframe.
This textbook is designed for an Introduction to Proofs course organized around the themes of number and space. Concepts are illustrated using both geometric and number examples, while frequent analogies and applications help build intuition and context in the humanities, arts, and sciences. Sophisticated mathematical ideas are introduced early and then revisited several times in a spiral structure, allowing students to progressively develop rigorous thinking. Throughout, the presentation is enlivened with whimsical illustrations, apt quotations, and glimpses of mathematical history and culture. Early chapters integrate an introduction to sets, logic, and beginning proof techniques with a fi...
The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.
This textbook bridges the gap between lower-division mathematics courses and advanced mathematical thinking. Featuring clear writing and appealing topics, the book introduces techniques for writing proofs in the context of discrete mathematics. By illuminating the concepts behind techniques, the authors create opportunities for readers to sharpen critical thinking skills and develop mathematical maturity. Beginning with an introduction to sets and logic, the book goes on to establish the basics of proof techniques. From here, chapters explore proofs in the context of number theory, combinatorics, functions and cardinality, and graph theory. A selection of extension topics concludes the book,...
In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and...
Topology Through Inquiry is a comprehensive introduction to point-set, algebraic, and geometric topology, designed to support inquiry-based learning (IBL) courses for upper-division undergraduate or beginning graduate students. The book presents an enormous amount of topology, allowing an instructor to choose which topics to treat. The point-set material contains many interesting topics well beyond the basic core, including continua and metrizability. Geometric and algebraic topology topics include the classification of 2-manifolds, the fundamental group, covering spaces, and homology (simplicial and singular). A unique feature of the introduction to homology is to convey a clear geometric m...
Regarding the matter of differential equations a considerable number of rudimentary books have been composed. This book overcomes any issues between rudimentary courses and the examination writing. The essential ideas important to contemplate differential equations - basic focuses and balance, occasional arrangements, invariant sets and invariant manifolds - are examined. Security hypothesis is created beginning with linearisation methods backpedaling to Lyapunov and Poincare. The global direct method is then examined. To acquire more quantitative data the Poincare-Lindstedt method is acquainted with estimated occasional arrangements while in the meantime demonstrating presence by the certai...