You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
The fields of integer programming and combinatorial optimization continue to be areas of great vitality, with an ever increasing number of publications and journals appearing. A classified bibliography thus continues to be necessary and useful today, even more so than it did when the project, of which this is the fifth volume, was started in 1970 in the Institut fur Okonometrie und Operations Research of the University of Bonn. The pioneering first volume was compiled by Claus Kastning during the years 1970 - 1975 and appeared in 1976 as Volume 128 of the series Lecture Notes in Economics and Mathematical Systems published by the Springer Verlag. Work on the project was continued by Dirk Hau...
This comprehensive handbook brings together experts who use optimization to solve problems that arise in telecommunications. It is the first book to cover in detail the field of optimization in telecommunications. Recent optimization developments that are frequently applied to telecommunications are covered. The spectrum of topics covered includes planning and design of telecommunication networks, routing, network protection, grooming, restoration, wireless communications, network location and assignment problems, Internet protocol, World Wide Web, and stochastic issues in telecommunications. The book’s objective is to provide a reference tool for the increasing number of scientists and engineers in telecommunications who depend upon optimization.
One has to make everything as simple as possible but, never more simple. Albert Einstein Discovery consists of seeing what every body has seen and thinking what nobody has thought. Albert S. ent_Gyorgy; The primary goal of this book is to provide an introduction to the theory of Interior Point Methods (IPMs) in Mathematical Programming. At the same time, we try to present a quick overview of the impact of extensions of IPMs on smooth nonlinear optimization and to demonstrate the potential of IPMs for solving difficult practical problems. The Simplex Method has dominated the theory and practice of mathematical pro gramming since 1947 when Dantzig discovered it. In the fifties and sixties seve...
For the first time, this book unites different algebraic approaches for discrete optimization and operations research. The presentation of some fundamental directions of this new fast developing area shows the wide range of its applicability.Specifically, the book contains contributions in the following fields: semigroup and semiring theory applied to combinatorial and integer programming, network flow theory in ordered algebraic structures, extremal optimization problems, decomposition principles for discrete structures, Boolean methods in graph theory and applications.
This book constitutes the proceedings of the First IAPR International Conference on Discrete Geometry and Mathematical Morphology, DGMM 2021, which was held during May 24-27, 2021, in Uppsala, Sweden. The conference was created by joining the International Conference on Discrete Geometry for computer Imagery, DGCI, with the International Symposium on Mathematical Morphology, ISMM. The 36 papers included in this volume were carefully reviewed and selected from 59 submissions. They were organized in topical sections as follows: applications in image processing, computer vision, and pattern recognition; discrete and combinatorial topology; discrete geometry - models, transforms, visualization; discrete tomography and inverse problems; hierarchical and graph-based models, analysis and segmentation; learning-based approaches to mathematical morphology; multivariate and PDE-based mathematical morphology, morphological filtering. The book also contains 3 invited keynote papers.
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative se...
description not available right now.
Linear and Combinatorial Optimization in Ordered Algebraic Structures
This little book is conceived as a service to mathematicians attending the 1998 International Congress of Mathematicians in Berlin. It presents a comprehensive, condensed overview of mathematical activity in Berlin, from Leibniz almost to the present day (without, however, including biographies of living mathematicians). Since many towering figures in mathematical history worked in Berlin, most of the chapters of this book are concise biographies. These are held together by a few survey articles presenting the overall development of entire periods of scientific life at Berlin. Overlaps between various chapters and differences in style between the chap ters were inevitable, but sometimes this provided opportunities to show different aspects of a single historical event - for instance, the Kronecker-Weierstrass con troversy. The book aims at readability rather than scholarly completeness. There are no footnotes, only references to the individual bibliographies of each chapter. Still, we do hope that the texts brought together here, and written by the various authors for this volume, constitute a solid introduction to the history of Berlin mathematics.
This book constitutes the refereed proceedings of the 28th International Colloquium on Automata, Languages and Programming, ICALP 2001, held in Crete, Greece in July 2001. four invited papers were carefully reviewed and selected from a total of 208 submissions. complexity, algorithm analysis, approximation and optimization, complexity, concurrency, efficient data structures, graph algorithms, language theory, codes and automata, model checking and protocol analysis, networks and routing, reasoning and verification, scheduling, secure computation, specification and deduction, and structural complexity.