You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Smart Materials in Additive Manufacturing, Volume Three: 4D-Printed Robotic Materials, Sensors, and Actuators covers the principles, real-world use, and advances in the cutting-edge field of 4D printed smart robotic materials. It discusses the mechanics of these materials, techniques by which to manufacture them, and different applications. Detailed modeling and control techniques are outlined, illustrating their use in real-world settings. Shape memory polymers, hydrogels, shape memory alloys, biomaterials, natural fibers, dielectric elastomers, liquid crystal elastomers, electroactive polymers, and more materials are covered, featuring in-depth discussion of their responses to stimuli, fab...
Smart Materials in Additive Manufacturing, Volume 2 covers the mechanics, modeling, and applications of the technology and the materials produced by it. It approaches the topic from an engineering design perspective with cutting-edge modeling techniques and real-world applications and case studies highlighted throughout. The book demonstrates 4D printing techniques for electro-induced shape memory polymers, pneumatic soft actuators, textiles, and more. Modeling techniques with ABAQUS and machine learning are outlined, as are manufacturing techniques for highly elastic skin, tunable RF and wireless structures and modules, and 4D printed structures with tunable mechanical properties. Closed-lo...
This book presents the different 3D/4D printing technological applications of Additive Manufacturing (AM) in Pharmaceutical Sciences. The initial chapter provides the historical perspective and current scenario of AM in pharmaceuticals. The book further discusses about different 3D printing platform technologies such as FDM, SLA, SLS, SSE, Ink-jet & binder jet principles & applications in developing advanced drug delivery systems. It also covers the methodology, materials for AM and important parameters associated with these platform technologies. The book highlights the progress and practical applications of 4D-printing technology in healthcare & pharmaceuticals fraternity as well including the essence of bioprinting in pharmaceuticals. Finally, the book reviews the regulatory guidelines, perspectives, and integration of Artificial Intelligence (AI)/Machine learning (ML) in pharmaceutical AM. This book is indeed a valuable resource for students, researchers/scholars, young start-ups/entrepreneurs, and pharmaceutical professionals by providing thorough detailing about AM in Pharmaceuticals.
Smart Materials in Additive Manufacturing, Volume 1 provides readers with an overview of the current smart materials widely in use and the techniques for additively manufacturing them. It demonstrates the principles developed for 4D printing in a way that is useful for students, early career researchers, and professionals. Topics covered include modeling and fabrication of 4D printed materials such as dielectric elastomer soft robots, low-voltage electroactive polymers, and stimuli-responsive hydrogels. 4D printing of light-responsive structures, gels and soft materials, and natural fiber composites are also discussed, as is origami-inspired 4D printing, 4D microprinting, and reversible 4D p...
Additive Manufacturing of Polymer Composites: Materials, Processes, and Properties presents the latest developments in AM of polymer matrix composites and illustrates the large range of composite materials that can be obtained. Different technologies with their own specificities such as: fused filament fabrication, selective laser sintering, stereolithography, and direct-ink-writing. Composites with chopped or continuous reinforcement, with synthetic or natural fibers, with thermoplastic or thermoset resin are compared and described in detail. Their thermal, physical, electrical, and mechanical properties are discussed. The book is dedicated to professionals involved in engineering design an...
Stimuli-responsive polymer systems can be defined as functional materials that show physical or chemical property changes in response to external stimuli such as temperature, radiation, chemical agents, pH, mechanical stress, and electric and magnetic fields. Recent developments in manufacturing techniques have facilitated the production of a wide range of stimuli-responsive polymer systems, such as micro- and nanoscale structures, with potential applications in soft sensors and actuators, smart textiles, soft robots, and artificial muscles. This book brings together the recent progress in manufacturing techniques, with particular emphasis on 3D and 4D printing and applications of stimuli-responsive polymer systems in biomedicine and soft robotics.
Presents recent advances such as industry 4.0, 4D printing, 3D material mechanical characterization, and printing of advanced materials. Highlights the interdisciplinary aspects of 3D printing particularly in biomedical, and aerospace engineering. Discusses mechanical and physical properties of 3D printed parts, material aspects, and process parameters. Showcases topics such as rapid prototyping, medical equipment design, and biomimetics related to the role of 3D printing in new product development. Covers applications of 3D printing in diverse areas including automotive, aerospace engineering, medical, and marine industry.
Additive Manufacturing of Biopolymers: Materials, Printing Techniques, and Applications describes various biopolymers that are currently used in additive manufacturing technologies and identifies the challenges/limitations in the materials and printing processes. The book provides basic knowledge and advanced details about 3D printing techniques and the applicable biopolymers as well as the latest updates on materials and techniques for 3D printing of biopolymers. Each chapter dedicates a section to future trends and perspectives in additive manufacturing of biopolymers from the use of biopolymers and new techniques point-of-view. - Provides an overview of biopolymer materials in terms of physicochemical properties that can be applied for the additive manufacturing process - Gives a comprehensive overview of applicable 3D printing techniques for biopolymers and their benefits and challenges - Explains in-depth chemical and physical properties of fabricated products for various applications - Offers a future vision in the development of both material and printing techniques in regard to biopolymers as well as new aspects in modeling and artificial intelligence issues
New materials and manufacturing techniques are evolving with the potential to address the challenges associated with the manufacture of medicinal products that will teach new tricks to old drugs. Nano- and microfabrication techniques include manufacturing methods such as additive manufacturing, lithography, micro-moulding, spray drying, and supercritical fluids among many others. The increasing resolution of new techniques allow researchers to produce objects with micrometric resolutions. This book follows a consecutive order, beginning with a background in the current field and limitations in the manufacturing of different pharmaceutical products, moving on the classification of each method by providing recent examples, and future prospective on a variety of traditional and new Nano and microfabrication techniques. A focus on the materials used to prepare these systems and their biocompatibility, including applied topics such as clinical applications and regulatory aspects also covered, offering the reader a holistic view of this rapidly growing field.