You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
This book provides theoretical background and state-of-the-art findings in artificial intelligence and cybersecurity for industry 4.0 and helps in implementing AI-based cybersecurity applications. Machine learning-based security approaches are vulnerable to poison datasets which can be caused by a legitimate defender's misclassification or attackers aiming to evade detection by contaminating the training data set. There also exist gaps between the test environment and the real world. Therefore, it is critical to check the potentials and limitations of AI-based security technologies in terms of metrics such as security, performance, cost, time, and consider how to incorporate them into the real world by addressing the gaps appropriately. This book focuses on state-of-the-art findings from both academia and industry in big data security relevant sciences, technologies, and applications.
Today, the convergence of Artificial Intelligence (AI) and Big Data has revolutionized industries worldwide, driving business growth and reshaping societies. While these technologies have yielded remarkable benefits, many developing countries face challenges in harnessing their potential due to inadequate data collection and availability. Emerging Advancements in AI and Big Data Technologies in Business and Society delves into the profound impact of AI and Big Data on the digital landscape and their transformative influence on social, economic, and political spheres. With a historical overview of AI's evolution and its operational definition, this book explores interconnected subfields such ...
This book provides a systematic and comprehensive overview of cognitive intelligence and AI-enabled IoT ecosystem and machine learning, capable of recognizing the object pattern in complex and large data sets. A remarkable success has been experienced in the last decade by emulating the brain–computer interface. It presents the applied cognitive science methods and AI-enabled technologies that have played a vital role at the core of practical solutions for a wide scope of tasks between handheld apps and industrial process control, autonomous vehicles, IoT, intelligent learning environment, game theory, human computer interaction, environmental policies, life sciences, playing computer game...
This book presents best selected papers presented at the International Conference on Data Science for Computational Security (IDSCS 2020), organized by the Department of Data Science, CHRIST (Deemed to be University), Pune Lavasa Campus, India, during 13–14 March 2020. The proceeding will be targeting the current research works in the areas of data science, data security, data analytics, artificial intelligence, machine learning, computer vision, algorithms design, computer networking, data mining, big data, text mining, knowledge representation, soft computing and cloud computing.
This is an open access book. The 2nd International Conference on Emerging Trends in Engineering (ICETE 2023) will be held in-person from April 28-30, 2023 at University College of Engineering, Osmania University, Hyderabad, India. Since its inception in 2019, The International Conference on Emerging Trends in Engineering (ICETE) has established to enhance the information exchange of theoretical research and practical advancements at national and international levels in the fields of Bio-Medical, Civil, Computer Science, Electrical, Electronics & Communication Engineering, Mechanical and Mining Engineering. This encourages and promotes professional interaction among students, scholars, resear...
Explainable AI (XAI) is an upcoming research field in the domain of machine learning. This book aims to provide a detailed description of the topics related to XAI and Blockchain. These two technologies can benefit each other, and the research outcomes will benefit society in multiple ways. Existing AI systems make decisions in a black box manner. Explainable AI delineates how an AI system arrived at a particular decision. It inspects the steps and models that are responsible for making a particular decision. It is an upcoming trend that aims at providing explanations to the AI decisions. Blockchain is emerging as an effective technique for XAI. It enables accessibility to digital ledgers am...
In the dynamic environment of healthcare, the fusion of Computational Intelligence and Healthcare Industry 4.0 has enabled remarkable advancements in disease detection and analysis. However, a critical challenge persists – the limitations of current computational intelligence approaches in dealing with small sample sizes. This setback hampers the performance of these innovative models, hindering their potential impact on medical applications. As we stand at the crossroads of technological innovation and healthcare evolution, the need for a solution becomes paramount. Advances in Computational Intelligence for the Healthcare Industry 4.0 is a comprehensive guide addressing the very heart of...
The book "Digital Transformation in Healthcare 5.0: Metaverse, Nanorobots, and Machine Learning" is a comprehensive discussion of disruptive technologies and their applications in healthcare. The book starts with an overview of blockchain technology's impact on the healthcare sector, emphasizing its potential to improve data security and interoperability. The book also discusses the Metaverse's role in healthcare transformation, utilizing a blockchain method to improve patient care and medical practices. The book also focuses on the interrelationships of Blockchain-Enabled Metaverse Healthcare Systems and Applications, highlighting innovative strategies. It also introduces an Intraocular Pressure Monitoring System for Glaucoma Patients, demonstrating the integration of IoT and Machine Learning for improved care. The book winds up with a Machine Learning Approach to Voice Analysis in Parkinson's disease Diagnosis, demonstrating the potential of voice analysis as a non-invasive diagnostic tool.
Machine vision applications in precision agriculture have attracted a great deal of attention. They focus on monitoring, protection, and management of various plant populations. These applications have shown potential value in reforming crucial components of plant production, including fine-grained ripeness recognition of all kinds of plants and detecting and classifying weeds, seeds, and pests for crop health, quality, and quantity enhancement. In recent decades, the extensive achievements of deep learning techniques have shown significant opportunities for almost all fields. Accordingly, many deep learning models have been presented for different types of images and have achieved promising...