You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
While there is a plethora of excellent, but mostly "tell-it-all'' books on the subject, this one is intended to take a unique place in what today seems to be a still wide open niche for an introductory text on the basics of functional analysis to be taught within the existing constraints of the standard, for the United States, one-semester graduate curriculum (fifteen weeks with two seventy-five-minute lectures per week). The book consists of seven chapters and an appendix taking the reader from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), through the basics of linear operators and functionals, the three fundamental principles (the Hahn-Banach Theor...
The philosophy of the book, which makes it quite distinct from many existing texts on the subject, is based on treating the concepts of measure and integration starting with the most general abstract setting and then introducing and studying the Lebesgue measure and integration on the real line as an important particular case. The book consists of nine chapters and appendix, with the material flowing from the basic set classes, through measures, outer measures and the general procedure of measure extension, through measurable functions and various types of convergence of sequences of such based on the idea of measure, to the fundamentals of the abstract Lebesgue integration, the basic limit ...
The book is intended as a text for a one-semester graduate course in operator theory to be taught "from scratch'', not as a sequel to a functional analysis course, with the basics of the spectral theory of linear operators taking the center stage. The book consists of six chapters and appendix, with the material flowing from the fundamentals of abstract spaces (metric, vector, normed vector, and inner product), the Banach Fixed-Point Theorem and its applications, such as Picard's Existence and Uniqueness Theorem, through the basics of linear operators, two of the three fundamental principles (the Uniform Boundedness Principle and the Open Mapping Theorem and its equivalents: the Inverse Mapp...
This is the second of two volumes containing peer-reviewed research and survey papers based on talks at the International Conference on Modern Analysis and Applications. The papers describe the contemporary development of subjects influenced by Mark Krein.
The book assists Calculus students to gain a better understanding and command of integration and its applications. It reaches to students in more advanced courses such as Multivariable Calculus, Differential Equations, and Analysis, where the ability to effectively integrate is essential for their success.Keeping the reader constantly focused on the three principal epistemological questions: 'What for?', 'Why?', and 'How?', the book is designated as a supplementary instructional tool and consists ofThe Answers to all the 192 Problems are provided in the Answer Key. The book will benefit undergraduates, advanced undergraduates, and members of the public with an interest in science and technology, helping them to master techniques of integration at the level expected in a calculus course.
This two-volume set presents combinatorial functional equations using an algebraic approach, and illustrates their applications in combinatorial maps, graphs, networks, etc. The first volume mainly presents basic concepts and the theoretical background. Differential (ordinary and partial) equations and relevant topics are discussed in detail.
The first half of the book provides an introduction to general topology, with ample space given to exercises and carefully selected applications. The second half of the text includes topics in asymmetric topology, a field motivated by applications in computer science. Recurring themes include the interactions of topology with order theory and mathematics designed to model loss-of-resolution situations.
Mathematical models cannot be solved using the traditional analytical methods for dynamic equations on time scales. These models must be dealt with using computational methods. This textbook introduces numerical methods for initial value problems for dynamic equations on time scales. Hands-on examples utilizing MATLAB and practical problems illustrate a wide variety of solution techniques.
Nonlinear Evolution Equation presents state-of-the-art theories and results on nonlinear evolution equation, showing related mathematical methods and applications. The basic concepts and research methods of infinite dimensional dynamical systems are discussed in detail. The unique combination of mathematical rigor and physical background makes this work an essential reference for researchers and students in applied mathematics and physics.
This book on functional analysis covers all the basics of the subject (normed, Banach and Hilbert spaces, Lebesgue integration and spaces, linear operators and functionals, compact and self-adjoint operators, small parameters, fixed point theory) with a strong focus on examples, exercises and practical problems, thus making it ideal as course material but also as a reference for self-study.