Seems you have not registered as a member of localhost.saystem.shop!

You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.

Sign up

Involutive Category Theory
  • Language: en
  • Pages: 250

Involutive Category Theory

This monograph introduces involutive categories and involutive operads, featuring applications to the GNS construction and algebraic quantum field theory. The author adopts an accessible approach for readers seeking an overview of involutive category theory, from the basics to cutting-edge applications. Additionally, the author’s own recent advances in the area are featured, never having appeared previously in the literature. The opening chapters offer an introduction to basic category theory, ideal for readers new to the area. Chapters three through five feature previously unpublished results on coherence and strictification of involutive categories and involutive monoidal categories, sho...

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms
  • Language: en
  • Pages: 85

Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms

  • Type: Book
  • -
  • Published: 2008-04-04
  • -
  • Publisher: Springer

For this printing of R. Bowen's book, J.-R. Chazottes has retyped it in TeX for easier reading, thereby correcting typos and bibliographic details. From the Preface by D. Ruelle: "Rufus Bowen has left us a masterpiece of mathematical exposition... Here a number of results which were new at the time are presented in such a clear and lucid style that Bowen's monograph immediately became a classic. More than thirty years later, many new results have been proved in this area, but the volume is as useful as ever because it remains the best introduction to the basics of the ergodic theory of hyperbolic systems."

Period Mappings with Applications to Symplectic Complex Spaces
  • Language: en
  • Pages: 295

Period Mappings with Applications to Symplectic Complex Spaces

  • Type: Book
  • -
  • Published: 2015-09-15
  • -
  • Publisher: Springer

Extending Griffiths’ classical theory of period mappings for compact Kähler manifolds, this book develops and applies a theory of period mappings of “Hodge-de Rham type” for families of open complex manifolds. The text consists of three parts. The first part develops the theory. The second part investigates the degeneration behavior of the relative Frölicher spectral sequence associated to a submersive morphism of complex manifolds. The third part applies the preceding material to the study of irreducible symplectic complex spaces. The latter notion generalizes the idea of an irreducible symplectic manifold, dubbed an irreducible hyperkähler manifold in differential geometry, to possibly singular spaces. The three parts of the work are of independent interest, but intertwine nicely.

Branching Random Walks
  • Language: en
  • Pages: 143

Branching Random Walks

  • Type: Book
  • -
  • Published: 2016-02-04
  • -
  • Publisher: Springer

Providing an elementary introduction to branching random walks, the main focus of these lecture notes is on the asymptotic properties of one-dimensional discrete-time supercritical branching random walks, and in particular, on extreme positions in each generation, as well as the evolution of these positions over time. Starting with the simple case of Galton-Watson trees, the text primarily concentrates on exploiting, in various contexts, the spinal structure of branching random walks. The notes end with some applications to biased random walks on trees.

Geometric Aspects of Functional Analysis
  • Language: en
  • Pages: 346

Geometric Aspects of Functional Analysis

Continuing the theme of the previous volumes, these seminar notes reflect general trends in the study of Geometric Aspects of Functional Analysis, understood in a broad sense. Two classical topics represented are the Concentration of Measure Phenomenon in the Local Theory of Banach Spaces, which has recently had triumphs in Random Matrix Theory, and the Central Limit Theorem, one of the earliest examples of regularity and order in high dimensions. Central to the text is the study of the Poincaré and log-Sobolev functional inequalities, their reverses, and other inequalities, in which a crucial role is often played by convexity assumptions such as Log-Concavity. The concept and properties of...

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations
  • Language: en
  • Pages: 244

Convex Integration Applied to the Multi-Dimensional Compressible Euler Equations

This book applies the convex integration method to multi-dimensional compressible Euler equations in the barotropic case as well as the full system with temperature. The convex integration technique, originally developed in the context of differential inclusions, was applied in the groundbreaking work of De Lellis and Székelyhidi to the incompressible Euler equations, leading to infinitely many solutions. This theory was later refined to prove non-uniqueness of solutions of the compressible Euler system, too. These non-uniqueness results all use an ansatz which reduces the equations to a kind of incompressible system to which a slight modification of the incompressible theory can be applied...

Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms
  • Language: en
  • Pages: 367

Relative Aspects in Representation Theory, Langlands Functoriality and Automorphic Forms

  • Type: Book
  • -
  • Published: 2018-10-01
  • -
  • Publisher: Springer

This volume presents a panorama of the diverse activities organized by V. Heiermann and D. Prasad in Marseille at the CIRM for the Chaire Morlet event during the first semester of 2016. It assembles together expository articles on topics which previously could only be found in research papers. Starting with a very detailed article by P. Baumann and S. Riche on the geometric Satake correspondence, the book continues with three introductory articles on distinguished representations due to P. Broussous, F. Murnaghan, and O. Offen; an expository article of I. Badulescu on the Jacquet–Langlands correspondence; a paper of J. Arthur on functoriality and the trace formula in the context of "Beyond Endoscopy", taken from the Simons Proceedings; an article of W-W. Li attempting to generalize Godement–Jacquet theory; and a research paper of C. Moeglin and D. Renard, applying the trace formula to the local Langlands classification for classical groups. The book should be of interest to students as well as professional researchers working in the broad area of number theory and representation theory.

Geometry and Analysis of Metric Spaces via Weighted Partitions
  • Language: en
  • Pages: 169

Geometry and Analysis of Metric Spaces via Weighted Partitions

The aim of these lecture notes is to propose a systematic framework for geometry and analysis on metric spaces. The central notion is a partition (an iterated decomposition) of a compact metric space. Via a partition, a compact metric space is associated with an infinite graph whose boundary is the original space. Metrics and measures on the space are then studied from an integrated point of view as weights of the partition. In the course of the text: It is shown that a weight corresponds to a metric if and only if the associated weighted graph is Gromov hyperbolic. Various relations between metrics and measures such as bilipschitz equivalence, quasisymmetry, Ahlfors regularity, and the volu...

Twisted Teichmüller Curves
  • Language: en
  • Pages: 177

Twisted Teichmüller Curves

  • Type: Book
  • -
  • Published: 2014-02-21
  • -
  • Publisher: Springer

These notes introduce a new class of algebraic curves on Hilbert modular surfaces. These curves are called twisted Teichmüller curves, because their construction is very reminiscent of Hirzebruch-Zagier cycles. These new objects are analyzed in detail and their main properties are described. In particular, the volume of twisted Teichmüller curves is calculated and their components are partially classified. The study of algebraic curves on Hilbert modular surfaces has been widely covered in the literature due to their arithmetic importance. Among these, twisted diagonals (Hirzebruch-Zagier cycles) are some of the most important examples.

Random Obstacle Problems
  • Language: en
  • Pages: 171

Random Obstacle Problems

  • Type: Book
  • -
  • Published: 2017-02-27
  • -
  • Publisher: Springer

Studying the fine properties of solutions to Stochastic (Partial) Differential Equations with reflection at a boundary, this book begins with a discussion of classical one-dimensional diffusions as the reflecting Brownian motion, devoting a chapter to Bessel processes, and moves on to function-valued solutions to SPDEs. Inspired by the classical stochastic calculus for diffusions, which is unfortunately still unavailable in infinite dimensions, it uses integration by parts formulae on convex sets of paths in order to describe the behaviour of the solutions at the boundary and the contact set between the solution and the obstacle. The text may serve as an introduction to space-time white noise, SPDEs and monotone gradient systems. Numerous open research problems in both classical and new topics are proposed.