You may have to register before you can download all our books and magazines, click the sign up button below to create a free account.
Functional membranes are used in food processing, sensor technology, medical and biomedical devices, desalination, waste water treatment, CO2 capture, energy production and energy storage, optoelectronics etc. The book reviews recent advances in the field and discusses challenges and perspectives. Keywords: Membrane Fabrication, Polymer Membranes, Self-Assembled Membranes, Molecular Probes, Membrane Fouling, Membrane Cleaning, Microfiltration, Ultrafiltration, Food Processing, Sensors, Medical Devices, Biomedical Applications, Desalination, Wastewater Treatment, Ion Exchange Processes, Polymeric Ceramic Membranes, Nano Holes, Fuel Cells, Lithium-Ion Batteries, Optoelectronics.
For environmental concerns, it is highly desirable to replace gas-based refrigeration by magnetic refrigeration. Magnetic refrigeration has significant advantages such as small volume, chemical stability, low cost, non-toxicity and not causing sound pollution. Among the pertinent magnetocaloric materials, perovskite manganites are of special interest because they exhibit extremely large magnetic entropy and adiabatic temperature variations, a small thermal or magnetic hysteresis, high chemical stability. Further, the Curie temperature and saturation magnetization can be tailored by changing doping element and doping concentrations. The book references 289 original resources and includes their direct web link for in-depth reading. Keywords: Magnetic Refrigeration, Magnetocaloric Effect, Perovskite Manganites, Perovskite Structure, Magnetic Entropy, Magnetic Hysteresis, Thermal Hysteresis, Chemical Stability, Curie Temperature, Saturation Magnetization, Lanthanides.
Composites materials is basically the combining of unique properties of materials to have synergistic effects. A combination of materials is needed to adapt to certain properties for any application area. There is an everlasting desire to make composite materials stronger, lighter or more durable than traditional materials. Carbon materials are known to be attractive in composites because of their combination of chemical and physical properties. In the recent years, development of new composites has been influenced by precision green approaches that restrict hazardous substances and waste created during production. This book ranges from the fundamental principles underpinning the fabrication...
Characterization, design, specific properties and applications of thermoset composites are reported. These composites are presently in high demand because they can be shaped into many-sided segments and structures, and can have a great variety of densities and special physical and mechanical properties. The research reported includes: Energy absorption of fiber reinforced composites; automotive crashworthiness; lignocellulosic composites; hybrid bast fiber reinforced composites; nano-carbon/polymer composites; electromagnetic shielding; structural mechanical applications; electromagnetic field emission applications, conductive composites; epoxy composites for structural purposes; tribological performance of polymeric composites.
All you want to know about negative thermal expansion materials in an easy to read condensed format. The development of these negative thermal expansion materials has advanced rapidly during the past fifteen years. This is the most up-to-date summary of the current range of negative thermal expansion materials and of the associated mechanisms.
The book presents new materials and methods for waste water treatments; including advanced oxidation processes, membrane technologies, detection and removal of heavy metals and organic compounds, and the use of nanomaterials, low cost adsorbents and bio flocculants. Keywords: Wastewater Treatment, Organic Molecule Degradation, Bio Flocculants, Coagulants, Pyrene, Pharmaceutical Compounds, Photocatalytic Degradation, Nanocrystalline Titanium Dioxide, Arsenic Removal, Membrane Technology, Activated Charcoal, Adsorbent Derived from Egg Shells, Degradation of Polycyclic Aromatic Hydrocarbons, Colorimetric Analysis, Luminescence, Spectroscopy, Atomic Absorption, Mass Spectrometric and Biosensor Based Techniques.
The recycling of rare earth elements is one of the great challenges for establishing a green economy. Rare earths play an essential role in a great many high-tech products and processes: electronic display screens , computer monitors, cell phones, rechargeable batteries, high-strength magnets, catalytic converters, fluorescent lamps etc. Recycling these materials not only results in valuable materials for new products; it also helps in reducing mountains of discarded products. The recycling methods discussed include bioleaching, biosorption, siderophores, algae and seaweed. carbon-based nanomaterials, silica, pyrometallurgy, electrochemistry, hydrometallurgy, solvent extraction and the use of various absorbents. The book references 253 original resources with their direct web links for in-depth reading. Keywords: Rare Earths, Bioleaching, Biosorption, Siderophores, Algae, Seaweed. Carbon-based Nanomaterials, Silica, Pyrometallurgy, Electrochemistry, Hydrometallurgy, Solvent Extraction, Absorbents, Ash, Slag, Red Mud, Contaminated Soil.
Biological synthesis employing microorganisms, fungi or plants is an alternative method to produce nanoparticles in low-cost and eco-friendly ways. The book covers the synthesis of metal nanoparticles, metal oxide nanostructures and nanocomposite materials, as well as the stability and characterization of bioinspired nanomaterials. Applications include optical and electrochemical sensors, packaging, SERS and drug delivery processes. Keywords: Bioinspired Nanomaterials, Metal Nanoparticles, Metal Oxide Nanostructures, Nanocomposite Materials, Microbicidal Activity, Drug Delivery, Packaging Applications, SERS Applications, Fluorescent Biosensing, Quantum Dots. Bio-Imaging, Electrochemical Sensors.
Urbanization, industrialization, and unethical agricultural practices have considerably negative effects on the environment, flora, fauna, and the health and safety of humanity. Over the last decade, green chemistry research has focused on discovering and utilizing safer, more environmentally friendly processes to synthesize products like organic compounds, inorganic compounds, medicines, proteins, enzymes, and food supplements. These green processes exist in other interdisciplinary fields of science and technology, like chemistry, physics, biology, and biotechnology, Still the majority of processes in these fields use and generate toxic raw materials, resulting in techniques and byproducts ...
This book presents the proceedings of the International Conference on Residual Stresses 10 and is devoted to the prediction/modelling, evaluation, control, and application of residual stresses in engineering materials. New developments, on stress-measurement techniques, on modelling and prediction of residual stresses and on progress made in the fundamental understanding of the relation between the state of residual stress and the material properties, are highlighted. The proceedings offer an overview of the current understanding of the role of residual stresses in materials used in wide ranging application areas.